Production of Ethanol from Sugarcane Molasses

  • Harpreet Kaur Guru Arjan of Dev Institute Development Studies 14-Preet Avenue
  • Rajan Keshri
Keywords: Ethanol, Wheat, Sugar beet and cornet, pH 4.5 and urea conc 0.5%

Abstract

Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz Ph, Substrate conc, Urea conc) for ethanol production from sugar cane molasses. Sugar cane molasses are cheapest source of ethanol production it can also produce from wheat, sugar beet and corn etc. The study was carried out by process of parameter optimization. The process parameters   optimized   were   substrate   conc, pH     and   urea   conc. The   values   of   the     process parameters are 30% substrate conc, pH 4.5 and urea conc 0.5%. Fermentation period was 7 to 8 days at 28°C. 

Downloads

Download data is not yet available.

References

McCambridge, J., Coleman, R., & McEachern, J. (2019). Public Health Surveillance Studies of Alcohol Industry Market and Political Strategies: A Systematic Review. Journal of Studies on Alcohol and Drugs, 80(2), 149–157. https://doi.org/10.15288/jsad.2019.80.149

Adrian, M., & Ferguson, B. S. (1987). Demand for domestic and imported alcohol in Canada. Applied Economics, 19(4), 531–540. https://doi.org/10.1080/00036848700000021

Cochran, S., & Anthonavage, M. (2015). Fatty Acids, Fatty Alcohols, Synthetic Esters and Glycerin Applications in the Cosmetic Industry. In: Lipids and Skin Health. Springer, CHAM. pp. 311-319

Goswami, P., Chinnadayyala, S. S. R., Chakraborty, M., Kumar, A. K., & Kakoti, A. (2013). An overview on alcohol oxidases and their potential applications. Applied Microbiology and Biotechnology, 97(10), 4259–4275. https://doi.org/10.1007/s00253-013-4842-9

Larsen, S. (1994). Alcohol use in the service industry. Addiction, 89(6), 733–741. https://doi.org/10.1111/j.1360-0443.1994.tb00959.x

Rabenau, H. F., Kampf, G., Cinatl, J., & Doerr, H. W. (2005). Efficacy of various disinfectants against SARS coronavirus. Journal of Hospital Infection, 61(2), 107–111. https://doi.org/10.1016/j.jhin.2004.12.023

Wu, J., Gao, M., & Taylor, D. H. (2014). Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence. Acta Pharmacologica Sinica, 35(3), 311–315. https://doi.org/10.1038/aps.2013.181

Hansen, A. (2005). Ethanol-diesel fuel blends - A review. Bioresource Technology, 96(3), 277–285. https://doi.org/10.1016/j.biortech.2004.04.007

Assefa, D., Melaku, T., Bayisa, B., & Alemu, S. (2020). COVID-19 Pandemic and its Implication on Hand Hygiene Status by Alcohol-based Hand Sanitizers Among Healthcare Workers in Jimma University Medical Center, Ethiopia [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-51049/v1

Thomson, E., & Bullied, A. (2020). Production of Ethanol-Based Hand Sanitizer in Breweries During the COVID-19 Crisis. Technical Quarterly, 57(1). https://doi.org/10.1094/TQ-57-1-0417-01

Ikegami, K., Hirose, Y., Sakashita, H., Maruyama, R., & Sugiyama, T. (2020). Role of polyphenol in sugarcane molasses as a nutrient for hexavalent chromium bioremediation using bacteria. Chemosphere, 250, 126267.

Ikegami, K., Hirose, Y., Sakashita, H., Maruyama, R., & Sugiyama, T. (2020). Role of polyphenol in sugarcane molasses as a nutrient for hexavalent chromium bioremediation using bacteria. Chemosphere, 250, 126267. https://doi.org/10.1016/j.chemosphere.2020.126267

Wu, R., Chen, D., Cao, S., Lu, Z., Huang, J., Lu, Q., Chen, Y., Chen, X., Guan, N., Wei, Y., & Huang, R. (2020). Enhanced ethanol production from sugarcane molasses by industrially engineered Saccharomyces cerevisiae via replacement of the PHO4 gene. RSC Advances, 10(4), 2267–2276. https://doi.org/10.1039/C9RA08673K

Asif, H. K., Ehsan, A., Kashaf, Z., Abeera, A. A., Azra, N., & Muneeb, Q. (2015). Comparative study of bioethanol production from sugarcane molasses by using Zymomonas mobilis and Saccharomyces cerevisiae. African Journal of Biotechnology, 14(31), 2455–2462. https://doi.org/10.5897/AJB2015.14569

Zhang, Q., Liu, W., Chen, B., Qiu, S., & Wang, T. (2020). Upgrading of aqueous ethanol to fuel grade higher alcohols over dandelion-like Ni-Sn catalyst. Energy Conversion and Management, 216, 112914. https://doi.org/10.1016/j.enconman.2020.112914

Anderson, J. E., & Wallington, T. J. (2020). Novel Method to Estimate the Octane Ratings of Ethanol–Gasoline Mixtures Using Base Fuel Properties. Energy & Fuels, 34(4), 4632–4642. https://doi.org/10.1021/acs.energyfuels.9b04204

Li, Z., Zhang, S., & Cao, F. (2020). Analysis of Performance and Stability Factors of Vehicle Ethanol Gasoline for Motor Vehicle. IOP Conference Series: Earth and Environmental Science, 514, 042025. https://doi.org/10.1088/1755-1315/514/4/042025

Published
2020-09-05
How to Cite
Harpreet Kaur, & Rajan Keshri. (2020). Production of Ethanol from Sugarcane Molasses. International Journal for Research in Applied Sciences and Biotechnology, 7(5), 93-97. https://doi.org/10.31033/ijrasb.7.5.13