Antibiotic Resistance: The Future Disaster
Abstract
Antibiotics are the ‘wonder drugs’ to combat microbes. For decades, multiple varieties of antibiotics have not only been used for therapeutic purposes but practiced prophylactic ally across other industries such as agriculture and animal husbandry. Uncertainty has arisen, as microbes have become resistant to common antibiotics while the host remains unaware that antibiotic resistance has emerged. We found that antibiotic resistance is increasing at an alarming rate. A growing list of infections i.e., pneumonia, tuberculosis, and gonorrhoea are becoming harder and at times impossible to treat while antibiotics are becoming less effective. Antibiotic-resistant infections correlate with the level of antibiotic consumption. Non-judicial use of antibiotics is mostly responsible for making the microbes resistant. The antibiotic treatment repertoire for existing or emerging hard-to-treat multidrug-resistant bacterial infections is limited, resulting in high morbidity and mortality report. Antibiotic resistance and its wider implications present us with a growing healthcare crisis. The emergence of antibiotic resistance in bacterial pathogens is an inevitable consequence of antibiotic use. The rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics, which have transformed medicine and saved millions of lives. Many decades after the first patients were treated with antibiotics; bacterial infections have again become a threat. The antibiotic resistance crisis has been attributed to the overuse and misuse of these medications, as well as a lack of new drug development by the pharmaceutical industry. Despite repeated warnings, negligent antibiotic use and poor infection control practice have led to the continuing development of extensive resistance problems worldwide.
Downloads
References
Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10(S12), S122–S129. https://doi.org/10.1038/nm1145
Maranan, M. C., Moreira, B., Boyle-Vavra, S., & Daum, R. S. (1997). ANTIMICROBIAL RESISTANCE IN STAPHYLOCOCCI. Infectious Disease Clinics of North America, 11(4), 813–849. https://doi.org/10.1016/S0891-5520(05)70392-5
Levy, S. B. (1992). From Tragedy the Antibiotic Age is Born. In S. B. Levy, The Antibiotic Paradox (pp. 1–12). Springer US. https://doi.org/10.1007/978-1-4899-6042-9_1
Davies, J., & Davies, D. (2010). Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433. https://doi.org/10.1128/MMBR.00016-10
Overview of Bacteria. (2017). Available at: http://www.merckmanuals.com/home/infections/bacterial-infections/overview-of-bacteria. Accessed on: 19 June 2020.
Chadwick, D. J., & Goode, J. (Eds.). (1997). Ciba Foundation Symposium 207 - Antibiotic Resistance: Origins, Evolution, Selection and Spread. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470515358
Hoge, C. W., Gambel, J. M., Srijan, A., Pitarangsi, C., & Echeverria, P. (1998). Trends in Antibiotic Resistance Among Diarrheal Pathogens Isolated in Thailand Over 15 Years. Clinical Infectious Diseases, 26(2), 341–345. https://doi.org/10.1086/516303
Rahman, A. E., Iqbal, A., Hoque, D. M. E., Moinuddin, Md., Zaman, S. B., Rahman, Q. S., Begum, T., Chowdhury, A. I., Haider, R., Arifeen, S. E., Kissoon, N., & Larson, C. P. (2017). Managing Neonatal and Early Childhood Syndromic Sepsis in Sub-District Hospitals in Resource Poor Settings: Improvement in Quality of Care through Introduction of a Package of Interventions in Rural Bangladesh. PLOS ONE, 12(1), e0170267. https://doi.org/10.1371/journal.pone.0170267
Drlica, K. (2003). The mutant selection window and antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 52(1), 11–17. https://doi.org/10.1093/jac/dkg269
Finch, R. G., Metlay, J. P., Davey, P. G., & Baker, L. J. (2004). Educational interventions to improve antibiotic use in the community: Report from the International Forum on Antibiotic Resistance (IFAR) colloquium, 2002. The Lancet Infectious Diseases, 4(1), 44–53. https://doi.org/10.1016/S1473-3099(03)00860-0
Kollef, M. H. (2003). The importance of appropriate initial antibiotic therapy for hospital-acquired infections. The American Journal of Medicine, 115(7), 582–584. https://doi.org/10.1016/j.amjmed.2003.09.002
Ibrahim, E. H., Sherman, G., Ward, S., Fraser, V. J., & Kollef, M. H. (2000). The Influence of Inadequate Antimicrobial Treatment of Bloodstream Infections on Patient Outcomes in the ICU Setting. Chest, 118(1), 146–155. https://doi.org/10.1378/chest.118.1.146
Mosdell, D. M., Morris, D. M., Voltura, A., Pitcher, D. E., Twiest, M. W., Milne, R. L., Miscall, B. G., & Fry, D. E. (1991). Antibiotic Treatment for Surgical Peritonitis: Annals of Surgery, 214(5), 543–549. https://doi.org/10.1097/00000658-199111000-00001
Hughes, V. M., & Datta, N. (1983). Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature, 302(5910), 725–726. https://doi.org/10.1038/302725a0
Chen, H. Y., Yuan, M., Ibrahim-Elmagbool, I. B., & Livermore, D. M. (1995). National survey of susceptibility to antimicrobials amongst clinical isolates of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 35(4), 521–534. https://doi.org/10.1093/jac/35.4.521
Chow, J. W. (1991). Enterobacter Bacteremia: Clinical Features and Emergence of Antibiotic Resistance during Therapy. Annals of Internal Medicine, 115(8), 585. https://doi.org/10.7326/0003-4819-115-8-585
Oppenheim, B. A. (1998). The changing pattern of infection in neutropenic patients. Journal of Antimicrobial Chemotherapy, 41(suppl 4), 7–11. https://doi.org/10.1093/jac/41.suppl_4.7
Neu, H. (1992). The Crisis in Antibiotic Resistance. Science, 257(5073), 1064-1073. Retrieved July 31, 2020, from www.jstor.org/stable/2879833
Bryan, L. E. (1988). General mechanisms of resistance to antibiotics. Journal of Antimicrobial Chemotherapy, 22(Supplement_A), 1–15. https://doi.org/10.1093/jac/22.Supplement_A.1
J. A. Shapiro, Ed. (1983). Mobile Genetic Elements. Ac- Ademic Press, NEW YORK.
Karess, R. E., & Rubin, G. M. (1984). Analysis of P transposable element functions in drosophila. Cell, 38(1), 135–146. https://doi.org/10.1016/0092-8674(84)90534-8
Mindlin, S. Z., Petrova, M. A., Bass, I. A., & Gorlenko, Zh. M. (2006). Origin, evolution, and migration of drug resistance genes. Russian Journal of Genetics, 42(11), 1257–1271. https://doi.org/10.1134/S1022795406110081
Mingeot-Leclercq, M.-P., Glupczynski, Y., & Tulkens, P. M. (1999). Aminoglycosides: Activity and Resistance. Antimicrobial Agents and Chemotherapy, 43(4), 727–737. https://doi.org/10.1128/AAC.43.4.727
24. Jacoby, G. A., & Medeiros, A. A. (1991). More extended-spectrum beta-lactamases. Antimicrobial Agents and Chemotherapy, 35(9), 1697–1704. https://doi.org/10.1128/AAC.35.9.1697
Bryan, L. E. (1988). General mechanisms of resistance to antibiotics. Journal of Antimicrobial Chemotherapy, 22(Supplement_A), 1–15. https://doi.org/10.1093/jac/22.Supplement_A.1
Kaur, M., Rai, J., & Randhawa, G. (2013). Recent advances in antibacterial drugs. International Journal of Applied and Basic Medical Research, 3(1), 3. https://doi.org/10.4103/2229-516X.112229
Lee, C.-R., Cho, I., Jeong, B., & Lee, S. (2013). Strategies to Minimize Antibiotic Resistance. International Journal of Environmental Research and Public Health, 10(9), 4274–4305. https://doi.org/10.3390/ijerph10094274
Appelbaum, P. C. (1992). Antimicrobial Resistance in Streptococcus pneumoniae: An Overview. Clinical Infectious Diseases, 15(1), 77–83. https://doi.org/10.1093/clinids/15.1.77
Critchley, I. A., Thornsberry, C., Piazza, G., Jones, M., Hickey, M. L., Barth, A. L., Mendes, C., Rossi, F. F., Sader, H. S., Teixeira, L. M., & Sahm, D. F. (2000). Antimicrobial susceptibility of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis collected from five centers in Brazil, 1997-98†. Clinical Microbiology and Infection, 6(4), 178–184. https://doi.org/10.1046/j.1469-0691.2000.00063.x
Haas, D. W., Stratton, C. W., Griffin, J. P., Weeks, L., & Alls, S. C. (1995). Diminished Activity of Ceftizoxime in Comparison to Cefotaxime and Ceftriaxone Against Streptococcus pneumoniae. Clinical Infectious Diseases, 20(3), 671–676. https://doi.org/10.1093/clinids/20.3.671
Lacy, M. K., Lu, W., Xu, X., Tessier, P. R., Nicolau, D. P., Quintiliani, R., & Nightingale, C. H. (1999). Pharmacodynamic Comparisons of Levofloxacin, Ciprofloxacin, and Ampicillin against Streptococcus pneumoniae in an In Vitro Model of Infection. Antimicrobial Agents and Chemotherapy, 43(3), 672–677. https://doi.org/10.1128/AAC.43.3.672
Wang, C. Y., Jerng, J. S., Cheng, K. Y., Lee, L. N., Yu, C. J., Hsueh, P. R., & Yang, P. C. (2006). Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: Clinical features, risk-factors and outcomes. Clinical Microbiology and Infection, 12(1), 63–68. https://doi.org/10.1111/j.1469-0691.2005.01305.x
Sprague, Karen. (1999). Antibiotic resistance: Myths, truths, and a rational formulary approach. Formulary; North Olmsted, 34(8), 664-682.
Erst EJ, Hashimotos S, Guglielmo J, et al. (1999). Effects of antibiotic therapy on Pseudomonas aeruginosa induced lung -injury -in a rat model. Antimicrob Agents Chemother, 43, 2389.
Golkar, Z., Bagasra, O., & Pace, D. G. (2014). Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. The Journal of Infection in Developing Countries, 8(02), 129–136. https://doi.org/10.3855/jidc.3573
Gould, I. M., & Bal, A. M. (2013). New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence, 4(2), 185–191. https://doi.org/10.4161/viru.22507
Wright, G. D. (2014). Something old, something new: Revisiting natural products in antibiotic drug discovery. Canadian Journal of Microbiology, 60(3), 147–154. https://doi.org/10.1139/cjm-2014-0063
Centers for Disease Control and Prevention, Office of Infectious Disease. Antibiotic resistance threats in the United States, (2013). Available at: http://www.cdc.gov/drugresistance/ threat-report-2013. Accessed on: 28 January, 2015.
Spellberg, B., & Gilbert, D. N. (2014). The Future of Antibiotics and Resistance: A Tribute to a Career of Leadership by John Bartlett. Clinical Infectious Diseases, 59(suppl 2), S71–S75. https://doi.org/10.1093/cid/ciu392
Read, A. F., & Woods, R. J. (2014). Antibiotic resistance management. Evolution, Medicine, and Public Health, 2014(1), 147–147. https://doi.org/10.1093/emph/eou024
Lushniak, B. D. (2014). Antibiotic Resistance: A Public Health Crisis. Public Health Reports, 129(4), 314–316. https://doi.org/10.1177/003335491412900402
Gross, M. (2013). Antibiotics in crisis. Current Biology, 23(24), R1063–R1065. https://doi.org/10.1016/j.cub.2013.11.057
Piddock, L. J. (2012). The crisis of no new antibiotics—What is the way forward? The Lancet Infectious Diseases, 12(3), 249–253. https://doi.org/10.1016/S1473-3099(11)70316-4
Bartlett, J. G., Gilbert, D. N., & Spellberg, B. (2013). Seven Ways to Preserve the Miracle of Antibiotics. Clinical Infectious Diseases, 56(10), 1445–1450. https://doi.org/10.1093/cid/cit070
Michael, C. A., Dominey-Howes, D., & Labbate, M. (2014). The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Frontiers in Public Health, 2. https://doi.org/10.3389/fpubh.2014.00145
Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750. https://doi.org/10.1016/S1473-3099(14)70780-7
Luyt, C.-E., Bréchot, N., Trouillet, J.-L., & Chastre, J. (2014). Antibiotic stewardship in the intensive care unit. Critical Care, 18(5), 480. https://doi.org/10.1186/s13054-014-0480-6
Viswanathan, V. (2014). Off-label abuse of antibiotics by bacteria. Gut Microbes, 5(1), 3–4. https://doi.org/10.4161/gmic.28027
Chuanchuen, R., Karkhoff-Schweizer, R. R., & Schweizer, H. P. (2003). High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. American Journal of Infection Control, 31(2), 124–127. https://doi.org/10.1067/mic.2003.11
Randall, C. P., Mariner, K. R., Chopra, I., & O’Neill, A. J. (2013). The Target of Daptomycin Is Absent from Escherichia coli and Other Gram-Negative Pathogens. Antimicrobial Agents and Chemotherapy, 57(1), 637–639. https://doi.org/10.1128/AAC.02005-12
Tsuchido, T., & Takano, M. (1988). Sensitization by heat treatment of Escherichia coli K-12 cells to hydrophobic antibacterial compounds. Antimicrobial Agents and Chemotherapy, 32(11), 1680–1683. https://doi.org/10.1128/AAC.32.11.1680
Tsuchido, T., Takeuchi, A., & Takano, M. (1992). Synthesis of lipopolysaccharide by Escherichia coli cells recovering from sublethal heat stress. Journal of Applied Bacteriology, 73(6), 531–534. https://doi.org/10.1111/j.1365-2672.1992.tb05017.x
Blake, K. L., & O’Neill, A. J. (2013). Transposon library screening for identification of genetic loci participating in intrinsic susceptibility and acquired resistance to antistaphylococcal agents. Journal of Antimicrobial Chemotherapy, 68(1), 12–16. https://doi.org/10.1093/jac/dks373
Vestergaard, M., Nøhr-Meldgaard, K., Bojer, M. S., Krogsgård Nielsen, C., Meyer, R. L., Slavetinsky, C., Peschel, A., & Ingmer, H. (2017). Inhibition of the ATP Synthase Eliminates the Intrinsic Resistance of Staphylococcus aureus towards Polymyxins. MBio, 8(5), mBio.01114-17, e01114-17. https://doi.org/10.1128/mBio.01114-17
Liu, A., Tran, L., Becket, E., Lee, K., Chinn, L., Park, E., Tran, K., & Miller, J. H. (2010). Antibiotic Sensitivity Profiles Determined with an Escherichia coli Gene Knockout Collection: Generating an Antibiotic Bar Code. Antimicrobial Agents and Chemotherapy, 54(4), 1393–1403. https://doi.org/10.1128/AAC.00906-09
Pelchovich, G., Schreiber, R., Zhuravlev, A., & Gophna, U. (2013). The contribution of common rpsL mutations in Escherichia coli to sensitivity to ribosome targeting antibiotics. International Journal of Medical Microbiology, 303(8), 558–562. https://doi.org/10.1016/j.ijmm.2013.07.006
Barbee, L. A., Soge, O. O., Holmes, K. K., & Golden, M. R. (2014). In vitro synergy testing of novel antimicrobial combination therapies against Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 69(6), 1572–1578. https://doi.org/10.1093/jac/dkt540
Hornsey, M., Longshaw, C., Phee, L., & Wareham, D. W. (2012). In Vitro Activity of Telavancin in Combination with Colistin versus Gram-Negative Bacterial Pathogens. Antimicrobial Agents and Chemotherapy, 56(6), 3080–3085. https://doi.org/10.1128/AAC.05870-11
Park, G. C., Choi, J. A., Jang, S. J., Jeong, S. H., Kim, C.-M., Choi, I. S., Kang, S. H., Park, G., & Moon, D. S. (2016). In Vitro Interactions of Antibiotic Combinations of Colistin, Tigecycline, and Doripenem Against Extensively Drug-Resistant and Multidrug-Resistant Acinetobacter baumannii. Annals of Laboratory Medicine, 36(2), 124. https://doi.org/10.3343/alm.2016.36.2.124
Coscia, L., Causa, P., Giuliani, E., & Nunziata, A. (1975). Pharmacological properties of new neuroleptic compounds. Arzneimittel-Forschung, 25(9), 1436–1442.
Nikaido, H. (2009). Multidrug Resistance in Bacteria. Annual Review of Biochemistry, 78(1), 119–146. https://doi.org/10.1146/annurev.biochem.78.082907.145923
Wright, G. D. (2011). Molecular mechanisms of antibiotic resistance. Chemical Communications, 47(14), 4055. https://doi.org/10.1039/c0cc05111j
Lipp, E. K., Huq, A., & Colwell, R. R. (2002). Effects of Global Climate on Infectious Disease: The Cholera Model. Clinical Microbiology Reviews, 15(4), 757–770. https://doi.org/10.1128/CMR.15.4.757-770.2002
Fact sheet 2016- Antibiotic resistance. (2017). Available at: http://www.who.int/mediacentre/factsheets/antibiotic-resistance/en/. Accessed on: 16 June 2020.
Peterson, E., & Kaur, P. (2018). Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Frontiers in Microbiology, 9, 2928. https://doi.org/10.3389/fmicb.2018.02928
Freire-Moran, L., Aronsson, B., Manz, C., Gyssens, I. C., So, A. D., Monnet, D. L., & Cars, O. (2011). Critical shortage of new antibiotics in development against multidrug-resistant bacteria—Time to react is now. Drug Resistance Updates, 14(2), 118–124. https://doi.org/10.1016/j.drup.2011.02.003
Lowy, F. D. (2003). Antimicrobial resistance: The example of Staphylococcus aureus. Journal of Clinical Investigation, 111(9), 1265–1273. https://doi.org/10.1172/JCI18535
Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10(S12), S122–S129. https://doi.org/10.1038/nm1145
Laxminarayan, R., & Brown, G. M. (2001). Economics of Antibiotic Resistance: A Theory of Optimal Use. Journal of Environmental Economics and Management, 42(2), 183–206. https://doi.org/10.1006/jeem.2000.1156
Tillett, H. E. (1992). Infectious Diseases of Humans: Dynamics and Control. R. M. Anderson, R. M. May, Pp. 757. Oxford University Press; 1991 (£50.00). Epidemiology and Infection, 108(1), 211–211. https://doi.org/10.1017/S0950268800059896
Perez Aldana, L., Kato, M., Nakagawa, S., Kawarasaki, M., Nagasako, T., Mizushima, T., Oda, H., Kodaira, J., Shimizu, Y., Komatsu, Y., Zheng, R., Takeda, H., Sugiyama, T., & Asaka, M. (2002). The Relationship Between Consumption of Antimicrobial Agents and the Prevalence of Primary Helicobacter pylori Resistance. Helicobacter, 7(5), 306–309. https://doi.org/10.1046/j.1523-5378.2002.00096.x
Normark, B. H., & Normark, S. (2002). Evolution and spread of antibiotic resistance. Journal of Internal Medicine, 252(2), 91–106. https://doi.org/10.1046/j.1365-2796.2002.01026.x
Linkevicius, M., Sandegren, L., & Andersson, D. I. (2016). Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance. Antimicrobial Agents and Chemotherapy, 60(2), 789–796. https://doi.org/10.1128/AAC.02465-1575.
Livermore, D. M. (2009). Has the era of untreatable infections arrived? Journal of Antimicrobial Chemotherapy, 64(Supplement 1), i29–i36. https://doi.org/10.1093/jac/dkp255
European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2012. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2013. Available at: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2012#copy-to-clipboard
European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2013. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2014. Available at: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2013#copy-to-clipboard
Laxminarayan, R. (2014). Antibiotic effectiveness: Balancing conservation against innovation. Science, 345(6202), 1299–1301. https://doi.org/10.1126/science.1254163
Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176–182. https://doi.org/10.1016/j.tim.2006.02.006
Pal, C., Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 16(1), 964. https://doi.org/10.1186/s12864-015-2153-5
Wales, A., & Davies, R. (2015). Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics, 4(4), 567–604. https://doi.org/10.3390/antibiotics4040567
Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J., & Hobman, J. L. (2017). Metal Resistance and Its Association With Antibiotic Resistance. In Advances in Microbial Physiology (Vol. 70, pp. 261–313). Elsevier. https://doi.org/10.1016/bs.ampbs.2017.02.001
Gillings, M. R. (2013). Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in Microbiology, 4. https://doi.org/10.3389/fmicb.2013.00004
Beaber, J. W., Hochhut, B., & Waldor, M. K. (2004). SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature, 427(6969), 72–74. https://doi.org/10.1038/nature02241
López, E., Elez, M., Matic, I., & Blázquez, J. (2007). Antibiotic-mediated recombination: Ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli: Antibiotic-stimulated genetic recombination. Molecular Microbiology, 64(1), 83–93. https://doi.org/10.1111/j.1365-2958.2007.05642.x
Blázquez, J., Couce, A., Rodríguez-Beltrán, J., & Rodríguez-Rojas, A. (2012). Antimicrobials as promoters of genetic variation. Current Opinion in Microbiology, 15(5), 561–569. https://doi.org/10.1016/j.mib.2012.07.007
Gillings, M. R., & Stokes, H. W. (2012). Are humans increasing bacterial evolvability? Trends in Ecology & Evolution, 27(6), 346–352. https://doi.org/10.1016/j.tree.2012.02.006
Gaze, W. H., Zhang, L., Abdouslam, N. A., Hawkey, P. M., Calvo-Bado, L., Royle, J., Brown, H., Davis, S., Kay, P., Boxall, A. B. A., & Wellington, E. M. H. (2011). Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. The ISME Journal, 5(8), 1253–1261. https://doi.org/10.1038/ismej.2011.15
Gaze, W. H., Krone, S. M., Larsson, D. G. J., Li, X.-Z., Robinson, J. A., Simonet, P., Smalla, K., Timinouni, M., Topp, E., Wellington, E. M., Wright, G. D., & Zhu, Y.-G. (2013). Influence of Humans on Evolution and Mobilization of Environmental Antibiotic Resistome. Emerging Infectious Diseases, 19(7). https://doi.org/10.3201/eid1907.120871
Maiques, E., Úbeda, C., Campoy, S., Salvador, N., Lasa, Í., Novick, R. P., Barbé, J., & Penadés, J. R. (2006). β-Lactam Antibiotics Induce the SOS Response and Horizontal Transfer of Virulence Factors in Staphylococcus aureus. Journal of Bacteriology, 188(7), 2726–2729. https://doi.org/10.1128/JB.188.7.2726-2729.2006
Gillings, M. R. (2017). Lateral gene transfer, bacterial genome evolution, and the Anthropocene: Lateral gene transfer in the Anthropocene. Annals of the New York Academy of Sciences, 1389(1), 20–36. https://doi.org/10.1111/nyas.13213.
Gillings, M. R. (2017). Class 1 integrons as invasive species. Current Opinion in Microbiology, 38, 10–15. https://doi.org/10.1016/j.mib.2017.03.002
Gu, D., Dong, N., Zheng, Z., Lin, D., Huang, M., Wang, L., Chan, E. W.-C., Shu, L., Yu, J., Zhang, R., & Chen, S. (2018). A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: A molecular epidemiological study. The Lancet Infectious Diseases, 18(1), 37–46. https://doi.org/10.1016/S1473-3099(17)30489-9
Meatherall, B. L., Gregson, D., Ross, T., Pitout, J. D. D., & Laupland, K. B. (2009). Incidence, Risk Factors, and Outcomes of Klebsiella pneumoniae Bacteremia. The American Journal of Medicine, 122(9), 866–873. https://doi.org/10.1016/j.amjmed.2009.03.034
WHO. Antimicrobial Resistance: Global Report on Surveillance 2014. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/antimicrobial-resistance/publications/surveillancereport/en/
Copyright (c) 2020 International Journal for Research in Applied Sciences and Biotechnology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.