Effect of Using Gamma Radiation on Storability and Sensory Acceptability of Sudanese Sorghum

  • Raga Yousif Abdel Rahman
  • Muna Ibrahim Abdalla
  • Abdel Halim Rahama Ahmed
Keywords: Gamma Irradiation, Insect Infestation, Affected Kernels, Sorghum Porridge, Sensory Evaluation


An attempt was made to extend the shelf life (storage stability) of sorghum grains by using gamma radiation source (Co60) as a mean of preservation by applying 10 and 30 KGy dose to the grains. Irradiated sorghum grains and control sample were stored at room temp. (30 + 5°C) and relative humidity of 30 + 5 %, and examined during storage the changes in physical properties insect and broken kernels .account and organoleptic properties of Sudanese traditional food (Aceda) The number of insect in the 10KGy irradiated grains was only one insect per Kg compared to 140 insect per Kg of the control (non irradiated grains) .

The culinary properties of sorghum porridge  prepared form irradiated  and non irradiated grains reflected deterioration in taste, flavor and texture of porridge prepared from the control grain (non irradiated ) and suitability of using10KGy dose for preservation of sorghum grain during storage.


Download data is not yet available.


AACC. (1989), Approved methods of american association of cereal chemists, 8th (ed.) st. paul, MN., USA.

Abdelseed Babiker, Abdalla Abdelwahab, Yagoub Abu ElGasim, Mohamed Ahmed Isam & Babiker, Elfadil. (2011). Some nutritional attributes of selected newly developed lines of sorghum (Sorghum bicolor) after fermentation. Journal of Agricultural Science and Technology, 13(3), 399-409

Afify, A. M.; El-Beltagi, H. S.; Abd El-Salam, S. M. & Omran, A. A. (2012). Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. APJTB, 2(3), 203–209.

Al-Kaisey, Mahdi Alwan, Abdul-Kader Mohammad, Manal Saeed, & Amjed. (2003). Effect of gamma irradiation on antinutritional factors in broad bean. Radiation Physics and Chemistry, 67(3), 493-496. doi: 10.1016/S0969-806X(03)00091-4

Bashir, K., Swer, T. L., Prakash, K. S., & Aggarwal, M. (2016). Physico-chemical and functional properties of gamma irradiated whole wheat flour and starch. LWT- Food Science and Technology, 76, 131-139. doi: 10.1016/j.lwt.2016.10.050

Bamidele OP, & Akanbi CT. (2013). Effect of gamma irradiation on physicochemical properties of stored pigeon pea (Cajanus cajan) flour. Food Sci Nutr., 1(5), 377-383. doi:10.1002/fsn3.50

Brooker, Donald B & Hall, Carl W & Bakker-Arkema, Fred W (1992). Drying and storage of grains and oilseeds. Van Nostrand Reinhold, New York

J. F. Diehl. (2002). Food irradiation-past, present and future. Radiation Physics and Chemistry, 63(3-6), 211-215. doi: 10.1016/S0969-806X(01)00622-3

Dicko Mamoudou, Gruppen H., Traore Alfred, Voragen Alphons, & Berkel Willem. (2006). Sorghum grain as human food in Africa: Relevance of content of starch and amylase activities. African Journal of Biotechnology, 5(5), 384-395.

V. N. Enujiugha, I. O. Olotu & S. A. Malomo (2012). The effect of γ-irradiation and cooking on the physicochemical properties of african oil bean seed (pentaclethra macrophylla benth) and its oil extract. Journal of Food Research, 1(2), 189-201. doi:10.5539/jfr.v1n2p189

R. F. Eustice. (2017). Global Status and Commercial Applications of Food Irradiation. In: Food Irradiation Technologies: Concepts, Applications and Outcomes. USA: Royal Society of Chemistry. pp. 397 - 424.

Gomez, K.A and Gomez, A.H. (1994). Statistical procedures for Agricultural Research, (2nd ed.). New York U.S.A.: John Wiley and Son Lnc. p. 68.

G.J. Hallman. (2001). Irradiation as a Quarantine Treatment In: Food Irradiation-Principles and Applications, Moline, R. (Ed.). New York: Wiley Inter Science. Pp. 113-130.

Hamid, S., Muzaffar, S., Wani, I. A., Masoodi, F. A., & Bhat, Mohd. M. (2016). Physical and cooking characteristics of two cowpea cultivars grown in temperate Indian climate. Journal of the Saudi Society of Agricultural Sciences, 15(2), 127–134. doi: 10.1016/j.jssas.2014.08.002

Helinski, M. E., Hassan, M. M., El-Motasim, W. M., Malcolm, C. A., Knols, B. G., & El-Sayed, B. (2008). Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation. Malaria Journal, 7(1), 65. doi: 10.1186/1475-2875-7-65

Jalarama Reddy. (2015). Impact of irradiation on nutritional quality and functional properties of soy flour and sprouted soy flour. International Journal of Advanced Research, 3(3), 1120-1129.

ICRISAT. (2009). ICRISAT Archival Report, In: International Crops Research Institute for the Semi Arid Tropics. Available at:


Ulrich Kleih, S Bala Ravi, B Dayakar Rao, and B Yoganand. (2007). Industrial Utilization of Sorghum in India. Journal of SAT Agriculture Research, 3(1), 1-38. Available at:


ICRISAT. (2004). Sorghum, a crop of substance. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India. ISBN 92-9066-473-8 Available at: http://oar.icrisat.org/2126/

Iwe, M.O. (2002). Handbook of Sensory Methods and Analysis. Rojoint Communication Services Ltd, Uwani-Enugu.

Kapu, M.M., M.L. Balarabe and M.G. Udomah, 1989. Effect of the extent of insect damage on the protein content of maize, guinea corn and cowpeas from Zaria, Nigeria. Nutr. Rep. Int., 40, 1159-1163.

Eldin Esam, Kabbashi Esameldin, Nasr Osman, Musa Sulafa, & Rushdi Mohamed. (2012). Use of Gamma Irradiation for Disinfestations of Guava Fruits from Fruit Flies [Ceratitis spp. & Bactrocera sp. (Diptera: Tephritidae)] in Khartoum State, Sudan. The Journal of Agricultural Science, 2(4), 177-182.

Kertesz, Z.I., Glegg, R.E., Boyle, F.P., Parsons, G.F. and Massey, L.M., JR. (1964), Effect of ionizing radiations on plant tissues. III. Softening and changes in pectins and cellulose of apples, carrots, and beetsa. Journal of Food Science, 29(1), 40-48. doi: 10.1111/j.1365-2621.1964.tb01691.x

David Kilcast. (1994). Effect of irradiation on vitamins. Food Chemistry, 49(2), 157-164. doi: 10.1016/0308-8146(94)90152-X

Marathe Sushama, Machaiah J., Rao B., Pednekar M., & Rao V. (2002). Extension of shelf‐life of whole‐wheat flour by gamma radiation. International Journal of Food Science & Technology, 37(2), 163 - 168. doi: 10.1046/j.1365-2621.2002.00553.x

Mohamed, E. A., Abdelraheem Ali, N., Ahmed, S. H., Mohamed Ahmed, I. A., & Babiker, E. E. (2010). Effect of radiation process on antinutrients and HCl extractability of calcium, phosphorus and iron during processing and storage. Radiation Physics and Chemistry, 79(7), 791–796. doi: 10.1016/j.radphyschem.2010.01.018

Boudries, N., Belhaneche, N., Nadjemi, B., Deroanne, C., Mathlouthi, M., Roger, B., & Sindic, M. (2009). Physicochemical and functional properties of starches from sorghum cultivated in the Sahara of Algeria. Carbohydrate Polymers, 78(3), 475–480. doi: 10.1016/j.carbpol.2009.05.010

Snedecor, G.W. and Cochran, W.G. (1987). Statistical Methods, 17th edn. Pp. 221-222. Ames, IA: The Iowa State University Press.

Gabriele Stoll. (2003). Natural Crop Protection in the Tropics. Margraf Publishers. Available at: http://www.naturalcropprotection.margraf-verlag.de/

Tilton, E. W., Brower, J. H., & Cogburn, R. R. (1974). Gamma Irradiation for Control of Insects in Wheat Flour. Journal of Economic Entomology, 67(3), 430–432. doi: 10.1093/jee/67.3.430

Urbain, W.M. (1986). Cereal grains, legumes, baked goods and dry food substances. In: Food Irradiation (edited by W.M. Urbain). Orlando. USA: Academic Press. pp. 217-221.

A. Zeb and T. Ahmed. (2004). The High Dose Irradiation Affect the Quality Parameters of Edible Oils. Pakistan Journal of Biological Sciences, 7(6), 943-946. doi: 10.3923/pjbs.2004.943.946

How to Cite
Raga Yousif Abdel Rahman, Muna Ibrahim Abdalla, & Abdel Halim Rahama Ahmed. (2020). Effect of Using Gamma Radiation on Storability and Sensory Acceptability of Sudanese Sorghum. International Journal for Research in Applied Sciences and Biotechnology, 7(4), 5-11. https://doi.org/10.31033/ijrasb.7.4.2