Factors Affecting the Persistence of Cholera Epidemics in Bibémi (North Cameroon)

  • Moussa Djaouda
  • Zoua Wadoubé
  • Roméo Wakayansam Bouba
  • Moïse Nola
Keywords: Vibrio cholerae, Cholera, Epidemics, Water, Risk Factors


The recurrent cholera outbreaks in north Cameroon suggests the existence of hotspot cholera potential reservoirs including polluted surface waters and groundwater. This study investigated water sources, for contamination with Vibrio cholerae, to highlight their role in disease transmission in the cholera endemic areas of Bibémi (north Cameroon). Risk factors of cholera transmission among households were also assessed. The water quality of 15 water points (1 borehole, 8 wells and 6 surface water points) was assessed through commonly used microbiological tests. Also analysed were physicochemical parameters of the water. Results pointed out unsafe water sources (wells and streams) with total coliforms present in all water samples (13-168 CFU/100mL). However, borehole water was negative for total coliforms (0 CFU/100mL) and was qualified for all domestic uses. The results reported the presence of V. cholerae reservoirs along the mayo-Barka course, a stream which water points digged on the dried-up bed are used as drinking water sources in Bibémi. Wells and borehole were negative to V. cholerae. The physico-chemical characteristics of water varied with sampling points. The pH of the water was acidic for most water points; the lower value of temperature was 28.90 °C and the higher was 31.05 °C. The values of electrical conductivity, TDSs and salinity fluctuated from 136.2 to 1308.0 µS/cm, 68.1 to 652.0 mg/l and 67.8 to 650.0 ppm respectively in the water samples.  The mayo-Barka presented the higher level of water mineralization. A survey carried out in the study area showed that the low level of education, poor hygiene, poor management of water sources and the scarcity of sanitation would contribute greatly the appearance and spread of cholera in Bibémi. Considering and improving these risk factors by health authorities would help reduce the incidence of cholera and improve the prevention strategies.


Download data is not yet available.


WHO (2017). Weekly epidemiological records. WHO, 92 (34), 477-500. Available at: https://www.who.int/wer/2017/wer9234/en/

Assogba A. L. et al. (2012). L'initiative contre les maladies diarrhéiques et entériques en Afrique: une contribution à la lutte contre le choléra. Médecine d'Afrique Noire, 5 (5), 251-257.

Debes A. (2015). Assessment of efficient and sustainable tools for cholera detection and intervention in low resource settings. PhD dissertation, Johns Hopkins University, Baltimore, USA, pp. 167.

Baron, S., Lesne, J., Moore, S., Rossignol, E., Rebaudet, S., Gazin, P., Barrais, R., Magloire, R., Boncy, J., & Piarroux, R. (2013). No Evidence of Significant Levels of Toxigenic V. cholerae O1 in the Haitian Aquatic Environment During the 2012 Rainy Season. PLoS Currents. https://doi.org/10.1371/currents.outbreaks.7735b392bdcb749baf5812d2096d331e

Tshwane University of Technology South Africa, Momba, M., Azab El-Liethy, M., & Tshwane University of Technology South Africa. (2019). Vibrio cholerae and Cholera biotypes. In Michigan State University, J. Rose, B. Jiménez-Cisneros, & UNESCO - International Hydrological Programme (Eds.), Global Water Pathogen Project. Michigan State University.https://doi.org/10.14321/waterpathogens.28

Guévart E. et al. (2006). Déterminants du choléra à Douala. Médecine Tropicale, 66, 283-291. Avilable at: https://www.jle.com/fr/MedSanteTrop/2006/66.3/283-291%20D%C3%A9terminants%20du%20ch%20o%20l%20%C3%A9%20ra%20%C3%A0%20Douala%20(Guevart).pdf

Akoachere, J.-F. T. K., Masalla, T. N., & Njom, H. A. (2013). Multi-drug resistant toxigenic Vibrio cholerae O1 is persistent in water sources in New Bell-Douala, Cameroon. BMC Infectious Diseases, 13(1), 366. https://doi.org/10.1186/1471-2334-13-366

Donkeng. (2011). Characterization of the bacterial flora of tilapia (Oreochoromis niloticus) harvested from four lakes in the north of Cameroon. African Journal of Biotechnology, 10(71), 16016- 16023. https://doi.org/10.5897/AJB10.1491

Gwenzi, W., & Sanganyado, E. (2019). Recurrent Cholera Outbreaks in Sub-Saharan Africa: Moving beyond Epidemiology to Understand the Environmental Reservoirs and Drivers. Challenges, 10(1), 1. https://doi.org/10.3390/challe10010001

Gwenzi, W., & Sanganyado, E. (2019). Recurrent Cholera Outbreaks in Sub-Saharan Africa: Moving beyond Epidemiology to Understand the Environmental Reservoirs and Drivers. Challenges, 10(1), 1. https://doi.org/10.3390/challe10010001

Ndié, J., Bayoro, I., Takoukam, I., & Wina, P. (2016). Étude Des Aspects Épidémiologiques Du Choléra Dans Le District De Santé De Tcholliré (Nord- Cameroun). European Scientific Journal, ESJ, 12(15), 278. https://doi.org/10.19044/esj.2016.v12n15p278

Ngwa, M. C., Liang, S., Kracalik, I. T., Morris, L., Blackburn, J. K., Mbam, L. M., Ba Pouth, S. F. B., Teboh, A., Yang, Y., Arabi, M., Sugimoto, J. D., & Morris, J. G. (2016). Cholera in Cameroon, 2000-2012: Spatial and Temporal Analysis at the Operational (Health District) and Sub Climate Levels. PLOS Neglected Tropical Diseases, 10(11), e0005105. https://doi.org/10.1371/journal.pntd.0005105

Commune de Bibémi (2014). Plan Communal de Développement de Bibémi. Available at: https://www.pndp.org

APHA (2012). Standard Methods for the Examination of Water and Wastewater (22nd edn). American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA.

M S Islam, M K Hasan, M A Miah, M Yunus, K Zaman, and M J Albert. (1994). Isolation of Vibrio cholerae O139 synonym Bengal from the aquatic environment in Bangladesh: implications for disease transmission. Appl Environ Microbiol, 60(5), 1684–1686.

Louis, V. R., Russek-Cohen, E., Choopun, N., Rivera, I. N. G., Gangle, B., Jiang, S. C., Rubin, A., Patz, J. A., Huq, A., & Colwell, R. R. (2003). Predictability of Vibrio cholerae in Chesapeake Bay. Applied and Environmental Microbiology, 69(5), 2773–2785. https://doi.org/10.1128/AEM.69.5.2773-2785.2003

Holt JG. et al. (2000). Bergey’s Manual of Determinative Bacteriology (9th edn). Lippincott Williams and Wilkins: Philadelphia.

Corneille Bakouan, Boubié Guel, Anne-Lise Hantson. (2017). Caractérisation physico-chimique des eaux des forages des villages de Tanlili etLilgomdé dans la région Nord du Burkina Faso - Corrélation entreles paramètres physico-chimiques. Afrique Science, 13(6), 325 - 337.

Djaouda, M., Lecke, A., Maine, M. K., Wadoube, Z., Liang, S., Nola, M., & Njine, T. (2018). Assessment of bacteriological quality of groundwater from boreholes in Maroua (Far North Cameroon). International Journal of Biological and Chemical Sciences, 12(2), 958. https://doi.org/10.4314/ijbcs.v12i2.26

Huq, A., Sack, R. B., Nizam, A., Longini, I. M., Nair, G. B., Ali, A., Morris, J. G., Khan, M. N. H., Siddique, A. K., Yunus, M., Albert, M. J., Sack, D. A., & Colwell, R. R. (2005). Critical Factors Influencing the Occurrence of Vibrio cholerae in the Environment of Bangladesh. Applied and Environmental Microbiology, 71(8), 4645–4654. https://doi.org/10.1128/AEM.71.8.4645-4654.2005

WHO. (1996). Total dissolved solids in drinking-water: background documents for development of WHO Guidelines for drinking-water quality. WHO, Geneva.

Djaouda, M., Njiné, T., Liang, S., Ebang Menye, D., Gaké, B., Zébazé Togouet, S. H., & Nola, M. (2014). Bacteriological Quality of Well Waters in Garoua, North Cameroon. Water Quality, Exposure and Health, 6(4), 161–176. https://doi.org/10.1007/s12403-014-0120-z

Monjerezi, M., & Ngongondo, C. (2012). Quality of Groundwater Resources in Chikhwawa, Lower Shire Valley, Malawi. Water Quality, Exposure and Health, 4(1), 39–53. https://doi.org/10.1007/s12403-012-0064-0

Huq, A., Hasan, N., Akanda, A., Whitcombe, E., Colwell, R., Haley, B., Alam, M., Jutla, A., & Sack, R. B. (2013). Environmental Factors Influencing Epidemic Cholera. The American Journal of Tropical Medicine and Hygiene, 89(3), 597–607. https://doi.org/10.4269/ajtmh.12-0721

Islam, M. S., Mahmud, Z. H., Islam, M. S., Saha, G. C., Zahid, A., Ali, A. Z., Hassan, M. Q., Islam, K., Jahan, H., Hossain, Y., Hasan, M. M., Cairncross, S., Carter, R., Luby, S. P., Cravioto, A., Endtz, H. Ph., Faruque, S. M., & Clemens, J. D. (2016). Safe distances between groundwater-based water wells and pit latrines at different hydrogeological conditions in the Ganges Atrai floodplains of Bangladesh. Journal of Health, Population and Nutrition, 35(1), 26. https://doi.org/10.1186/s41043-016-0063-z

Olatunde, S. K., & Ayandele, A. A. (2018). Microbiological and physico-chemical analyses of hand dug well-water near pit latrine in a rural Area of Western Nigeria. African Journal of Environmental Science and Technology, 12(4), 132–140. https://doi.org/10.5897/AJEST2017.2463

Nsagha, D. S., Atashili, J., Fon, P. N., Tanue, E. A., Ayima, C. W., & Kibu, O. D. (2015). Assessing the risk factors of cholera epidemic in the Buea Health District of Cameroon. BMC Public Health, 15(1), 1128. https://doi.org/10.1186/s12889-015-2485-8

Janny T. (2004). Epidémies de choléra en Afrique: Analyse d’une étiologie multifactorielle, Mémoire de l’Ecole Nationale de la Santé publique (ENSP), Rennes, FRANCE, pp. 59.

ACF. (2006). Eau Assainissement Hygiène pour les populations à risque. (2ème edition). Hermann, PARIS, pp. 785.

How to Cite
Djaouda, M., Wadoubé, Z., Wakayansam Bouba, R., & Nola, M. (2020). Factors Affecting the Persistence of Cholera Epidemics in Bibémi (North Cameroon). International Journal for Research in Applied Sciences and Biotechnology, 7(4), 70-83. https://doi.org/10.31033/ijrasb.7.4.9