Finite Integral Involving the Modified Generalized Aleph-Function of Two Variables Extension and Generalized Extented Hurwitz’s Zeta Function

  • Frédéric Ayant Teacher in High School, FRANCE
  • Prvindra Kumar D. J. College, Baraut, INDIA
Keywords: double Mellin-Barnes integrals contour, arcsin function, extension of M-series, Generalized modified Aleph-function of two variables, generalized modified I-function of two variables, generalized modified H-function, of two variables, generalized modified Meijer-function, of two variables Aleph-function of two variables, I-function of two variables, H-function of two variables, Meijer G-function of two variables, extented Zta function


In the present paper, we evaluate the general finite integral invoving the generalized Zeta function and the modified of generalized Aleph-function of two variables.


Download data is not yet available.


R.P. Agarwal, "An extension of Meijer's G-function," Proc. Nat. Inst. Sci. India Part A, 31 (1965), 536-546.

M. Arshad, J. Choi, S. Mubeen,K.S Nisar, and G. Rahman, A new extension of the Mittag-Leffler function, Commun. Korean Math. Soc. 33 (2018), No. 2, pp. 549-560.

M.K. Bansal and D. Kumar, On the integral operators pertaining to a family of incomplete I-functions, AIMS Mathematics 5(2) (2020), 1247-1259.

M.K. Bansal, D. Kumar, K.S. Nisar and J. Singh, Certain fractional calculus and integral transform results of incomplete Aleph-functions with applications, Math. Mech; Appli. Sci (Wiley), (2020), 1-13.

M.K. Bansal, D. Kumar, I. Khan, J. Singh and K.S. Nisar, Certain unified integrals associated with product of Mseries and incomplete H-functions, Mathematics, (7) (2019), 1-11.

B.L.J. Braaksma, Asymptotics expansions and analytic continuations for a class of Barnes-integrals, Compositio Math. 15 (1962-1964), 239-341.

Y.A. Brychkov, Handbook of special functions, Derivatives, Integrals, Series and oher formulas, CRC. Press. Taylor and Francis Group. Boca. Raton, London, New York 2008.

K.C. Gupta, and P.K. Mittal, Integrals involving a generalized function of two variables, (1972), 430-437.

D. Kumar, Generalized fractional differintegral operators of the Aleph-function of two variables, Journal of Chemical, Biological and Physical Sciences, Section C, 6(3) (2016), 1116-1131.

K S. Kumari, T.M. Vasudevan Nambisan and A.K. Rathie, A study of I-functions of two variables, Le matematiche 69(1) (2014), 285-305.

G.M. Mittag-Leffler, Une généralisation de l’intégrale de Laplace-Abel. C. R. Acad. Sci., Ser. II 137, 537-539 (1903).

G.M. Mittag-Leffler, Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. 137, 554-558 (1903).

G. M. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme une function monogène, Acta. Math. 29 (1905), 101–181.

M.A. Ozarslan and B. Yilmaz. 2014. The extended Mittag Leffler function and its properties. Journal of Inequalities and Applications, 85, (2014)1–10.

T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971).

Y. Pragathi Kumar and B. Satyanarayana, A study of Psi-function, Journal of Informatics and mathematical Sciences, Vol. 12 (2) (2020), 159-171.

J. C. Prajapati and A. K. Shukla, On New Prajapati-Shukla Functions And Polynomials, Mathematics, Today Vol.27 (2011), 24-39.

Y.N. Prasad and S. Prasad, (1979 -1980) : Journal of scientific research, Banaras Hindu University, 30 (1), 67 -76.

A.K. Rathie, A new generalization of generalized hypergeometric functions, Le Matematiche, 52 (2) (1997), 297-310.

V.P. Saxena, The I-function, Anamaya Publishers, New Delhi, 2008.

K. Sharma, On the Integral Representation and Applications of the Generalized Function of Two Variables, International Journal of Mathematical Engineering and Science, 3(1) (2014), 1-13.

C.K. Sharma and P.L. Mishra, On the I-function of two variables and its Certain properties, Acta Ciencia Indica, 17 (1991), 1-4.

H. Singh and P. Kumar, Finite integral formulas involving multivariable Mittag-Leffler function and Modified Ifunction, Int. Jr. of Mathematical sciences and Application, Vol 8(2), (2018), 115-128.

L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966.

N. Südland, N B. Baumann and T.F. Nonnenmacher, Open problem: who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.

A. Wiman, Über der Fundamentalsatz in der Theorie der Funktionen Eα(x). Acta Math. 29, 191-201 (1905).

A. Wiman, Über die Nullstellen der Funktionen Eα(x). Acta Math. 29, 217-234 (1905).

How to Cite
Frédéric Ayant, & Prvindra Kumar. (2021). Finite Integral Involving the Modified Generalized Aleph-Function of Two Variables Extension and Generalized Extented Hurwitz’s Zeta Function. International Journal for Research in Applied Sciences and Biotechnology, 8(5), 198-212.