Review Article: Lung Cancer Pathophysiology using CRISPR Technology

  • Mohammed Subhi Mohammed Kufa Technical Institute, Al-Furat Al-Awsat Technical University, Al-Najaf, IRAQ
  • Rana Ahmed Najm Kufa Technical Institute, Al-Furat Al-Awsat Technical University, Al-Najaf, IRAQ
  • Ameer Ali Imarah Faculty of Science, University of Kufa, IRAQ
Keywords: CRISPR, Cas9, pathology associated genes, lung cancer


According to the World Health Organization, respiratory disorders, such as “influenza infection, acute tracheal bronchitis, TB, chronic obstructive pulmonary disease, lung cancer, and nasopharyngeal carcinoma”, have a major influence on human health. While environmental and socioeconomic variables might impact the pathogenesis of lung and respiratory tract diseases, it is nevertheless important to further investigate genetic and epigenetic reasons since a great many respiratory illnesses have a genetic or epigenetic basis. CRISPR is made up of interspaced, regularly-spaced palindromic repeated sequences and related proteins that carry out the CRISPR system's duties, which are found in prokaryotes' immune systems. This technology may be used to target, alter, and control genes, making it essential in respiratory research. Cas9 systems enable preclinical modelling of causative variables implicated in respiratory disorders, to generate fresh insights into its operations. CRISPR is also used to hunt for respiratory functions and pathology-associated genes. Which may lead to the discovery of new disease causes or therapeutic targets. The genetic and epigenetic mutations and the disease-associated mutations could be edited using CRISPR/Cas9. This kind of personalised medicine, which might be combined with stem cell reprogramming and transplantation are additional methods, that support embryonic stem cell expansion, might lead to the creation of novel respiratory illness treatment options. The new and developing area of investigation of CRISPR gene editing is one that requires further study the challenges of its specialty and the need for effective and safe delivery strategies. In respiratory health research and treatment, CRISPR systems represent an important step forward, and the discoveries made possible by this technology are likely to continue.


Download data is not yet available.


Alapati D, Morrisey EE. Gene editing and genetic lung disease. Basic research meets therapeutic application. Am. J. Respir. Cell Mol. Biol. 2017; 56: 283–90.

Bai Y, Liu Y, Su Z, Ma Y, Ren C, Zhao R, Ji HL. Gene editing as a promising approach for respiratory diseases. J. Med. Genet. 2018; 55: 143–9.

Waryah CB, Moses C, Arooj M, Blancafort P. Zinc fingers, TALEs, and CRISPR systems: a comparison of tools for epigenome editing. Methods Mol. Biol. 2018; 1767: 19–63.

Wright AV, Nunez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineer- ing. Cell 2016; 164: 29–44.

Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F. RNA editing with CRISPR-Cas13. Science 2017; 358: 1019–27.

Patterson AG, Yevstigneyeva MS, Fineran PC. Regulation of CRISPR-Cas adaptive immune systems. Curr. Opin. Microbiol. 2017; 37: 1–7.

Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014; 507: 62–7.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819–23.

Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 2013; 31: 833–8.

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152: 1173–83.

Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern- Ginossar N, Brandman O, Whitehead EH, Doudna JA et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154: 442–51.

Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EP, Lin S, Kiani S, Guzman CD, Wiegand DJ et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 2015; 12: 326–8.

Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014; 159: 647–61.

Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H et al. Genome-scale transcriptional activation by an engineered CRISPR- Cas9 complex. Nature 2015; 517: 583–8.

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533: 420–4.

Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520: 186–91.

Kim D, Kim J, Hur JK, Been KW, Yoon S-h, Kim J-S. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 2016; 34: 863–8.

Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK. Genome-wide specific- ities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotech- nol. 2016; 34: 869–74.

Chu HW, Rios C, Huang C, Wesolowska-Andersen A, Burchard EG, O’Connor BP, Fingerlin TE, Nichols D, Reynolds SD, Seibold MA. CRISPR–Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Ther. 2015; 22: 822–9.

Stolzenburg LR, Harris A. Microvesicle-mediated delivery of miR-1343: impact on markers of fibrosis. Cell Tissue Res. 2018; 371: 325–38.

Zhang YH, Wu LZ, Liang HL, Yang Y, Qiu J, Kan Q, Zhu W, Ma CL, Zhou XY. Pulmonary surfactant synthesis in miRNA-26a-1/miRNA- 26a-2 double knockout mice generated using the CRISPR/Cas9 system. Am. J. Transl. Res. 2017; 9: 355–65.

Wu Q, Jiang D, Matsuda JL, Ternyak K, Zhang B, Chu HW. Ciga- rette smoke induces human airway epithelial senescence via growth differentiation factor 15 production. Am. J. Respir. Cell Mol. Biol. 2016; 55: 429–38.

Gao X, Bali AS, Randell SH, Hogan BL. GRHL2 coordinates regen- eration of a polarized mucociliary epithelium from basal stem cells. J. Cell Biol. 2015; 211: 669–82.

Rosen BH, Chanson M, Gawenis LR, Liu J, Sofoluwe A, Zoso A, Engelhardt JF. Animal and model systems for studying cystic fibro- sis. J. Cyst. Fibros. 2018; 17: s28–34.

Borel F, Sun H, Zieger M, Cox A, Cardozo B, Li W, Oliveira G, Davis A, Gruntman A, Flotte TR et al. Editing out five Serpina1 paralogs to create a mouse model of genetic emphysema. Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 2788–93.

Kook S, Qi A, Wang P, Meng S, Gulleman P, Young LR, Guttentag SH. Gene-edited MLE-15 cells as a model for the Hermansky-Pudlak syndromes. Am. J. Respir. Cell Mol. Biol. 2018; 58: 566–74.

Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, Joshi NS, Subbaraj L, Bronson RT, Xue W et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 2014; 516: 428–31.

Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M et al. CRISPR- Cas9 knockin mice for genome editing and cancer modeling. Cell 2014; 159: 440–55.

Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, Karakousi TR, Ellis DC, Bhutkar A, Sanchez-Rivera FJ et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 2017; 23: 1362–8.

Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E et al. In vivo engineering of oncogenic chromosomal rearrange- ments with the CRISPR/Cas9 system. Nature 2014; 516: 423–7.

Sanjana NE, Shalem O, Zhang F. Improved vectors and genome- wide libraries for CRISPR screening. Nat. Methods 2014; 11: 783–4.

Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 2016; 5: e19760.

Wu Q, Tian Y, Zhang J, Tong X, Huang H, Li S, Zhao H, Tang Y, Yuan C, Wang K et al. In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 2018; 115: e3978–86.

Liao S, Davoli T, Leng Y, Li MZ, Xu Q, Elledge SJ. A genetic inter- action analysis identifies cancer drivers that modify EGFR depen- dency. Genes Dev. 2017; 31: 184–96.

Han J, Perez JT, Chen C, Li Y, Benitez A, Kandasamy M, Lee Y, Andrade J, tenOever B, Manicassamy B. Genome-wide CRISPR/- Cas9 screen identifies host factors essential for influenza virus rep- lication. Cell Rep. 2018; 23: 596–607.

Kim HS, Lee K, Bae S, Park J, Lee CK, Kim M, Kim E, Kim M, Kim S, Kim C et al. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection. J. Biol. Chem. 2017; 292: 10664–71.

Unniyampurath U, Pilankatta R, Krishnan MN. RNA interference in the age of CRISPR: will CRISPR interfere with RNAi? Int. J. Mol. Sci. 2016; 17: 291.

Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R et al. Per- turb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 2016; 167: 1853–66.e17.

Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, Schuster LC, Kuchler A, Alpar D, Bock C. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 2017; 14: 297–301.

Hart SL, Harrison PT. Genetic therapies for cystic fibrosis lung dis- ease. Curr. Opin. Pharmacol. 2017; 34: 119–24.

Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 2015; 12: 1385–90.

Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, Na CL, Weaver TE, Vedaie M, Hurley K et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithe- lial cells. Cell Stem Cell 2017; 21: 472–88.e10.

Stephens CJ, Kashentseva E, Everett W, Kaliberova L, Curiel DT. Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther. 2018; 25: 139–56.

Bjursell M, Porritt MJ, Ericson E, Taheri-Ghahfarokhi A, Clausen M, Magnusson L, Admyre T, Nitsch R, Mayr L, Aasehaug L et al. Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates α1-antitrypsin defi- ciency phenotype. EBioMedicine 2018; 29: 104–11.

Alton EW, Boyd AC, Davies JC, Gill DR, Griesenbach U, Harrison PT, Henig N, Higgins T, Hyde SC, Innes JA et al. Genetic medicines for CF: hype versus reality. Pediatr. Pulmonol. 2016; 51: s5–17.

Song J, Cano-Rodriquez D, Winkle M, Gjaltema RA, Goubert D, Jurkowski TP, Heijink IH, Rots MG, Hylkema MN. Targeted epige- netic editing of SPDEF reduces mucus production in lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017; 312: L334–l347.

Qiu XY, Zhu LY, Zhu CS, Ma JX, Hou T, Wu XM, Xie SS, Min L, Tan DA, Zhang DY et al. Highly effective and low-cost MicroRNA detection with CRISPR-Cas9. ACS Synth. Biol. 2018; 7: 807–13.

Aalipour A, Dudley JC, Park SM, Murty S, Chabon JJ, Boyle EA, Diehn M, Gambhir SS. Deactivated CRISPR associated protein 9 for minor-allele enrichment in cell-free DNA. Clin. Chem. 2018; 64: 307–16.

Martin F, Sánchez-Hernández S, Gutiérrez-Guerrero A, Pinedo- Gomez J, Benabdellah K. Biased and unbiased methods for the detection of off-target cleavage by CRISPR/Cas9: an overview. Int. J. Mol. Sci. 2016; 17: 1507.

Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonu- cleases and nickases. Genome Res. 2014; 24: 132–41.

Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome-wide analy- sis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 2014; 32: 677–83.

Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotech- nol. 2014; 32: 670–6.

Tasan I, Zhao H. Targeting specificity of the CRISPR/Cas9 system. ACS Synth. Biol. 2017; 6: 1609–13.

Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529: 490–5.

Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351: 84–8.

Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018; 36: 765.

Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inac- tive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 2016; 34: 339–44.

Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology- directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 2014; 3: e04766.

Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribo- nucleoproteins. Genome Res. 2014; 24: 1012–9.

Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 2015; 208: 44–53.

Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA et al. Generation of knock-in primary human T cells using Cas9 ribonu- cleoproteins. Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 10437–42.

Cui L, Vigouroux A, Rousset F, Varet H, Khanna V, Bikard D. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat. Commun. 2018; 9: 1912.

Marangi M, Pistritto G. Innovative therapeutic strategies for cystic fibrosis: moving forward to CRISPR technique. Front. Pharmacol. 2018; 9: 396.

Bos AC, van Holsbeke C, de Backer JW, van Westreenen M, Janssens HM, Vos WG, Tiddens HA. Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: are we dosing high enough? PLoS One 2015; 10: e0118454.

Ma H, Marti-Gutierrez N, Park S-W, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017; 548: 413–9.

Alton EW, Boyd AC, Cheng SH, Cunningham S, Davies JC, Gill DR, Griesenbach U, Higgins T, Hyde SC, Innes JA et al. A randomised, double-blind, placebo-controlled phase IIB clinical trial of repeated application of gene therapy in patients with cystic fibro- sis. Thorax 2013; 68: 1075–7.

Alton EW, Boyd AC, Porteous DJ, Davies G, Davies JC, Griesenbach U, Higgins TE, Gill DR, Hyde SC, Innes JA; UK Cystic Fibrosis Gene Therapy Consortium. A phase I/IIa safety and effi- cacy study of nebulized liposome-mediated gene therapy for cystic fibrosis supports a multidose trial. Am. J. Respir. Crit. Care Med. 2015; 192: 1389–92.

Alton EW, Beekman JM, Boyd AC, Brand J, Carlon MS, Connolly MM, Chan M, Conlon S, Davidson HE, Davies JC et al. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. Thorax 2017; 72: 137–47.

Kleinjan DA, Wardrope C, Nga Sou S, Rosser SJ. Drug-tunable multidimensional synthetic gene control using inducible degron- tagged dCas9 effectors. Nat. Commun. 2017; 8: 1191.

Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 2019; 25: 249–254.

Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C et al. p53 Inhibits CRISPR- Cas9 engineering in human pluripotent stem cells. Nat. Med. 2018; 24: 939–46.

Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR- Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 2018; 24: 927–30.

Munoz DM, Cassiani PJ, Li L, Billy E, Korn JM, Jones MD, Golji J, Ruddy DA, Yu K, McAllister G et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 2016; 6: 900–13.

Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang CZ, Ben- David U, Cook A, Ha G, Harrington WF, Doshi MB et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 2016; 6: 914–29.

Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 2015;160:339–50.

How to Cite
Mohammed Subhi Mohammed, Rana Ahmed Najm, & Ameer Ali Imarah. (2021). Review Article: Lung Cancer Pathophysiology using CRISPR Technology. International Journal for Research in Applied Sciences and Biotechnology, 8(3), 222-230.