Intronic SNPs and Genetic Diseases: A Review

  • Maan Hasan Salih College of Sciences, Tikrit University, Tikrit, IRAQ
  • Adnan F Al-Azzawie College of Sciences, Tikrit University, Tikrit, IRAQ
  • Akeel Hussain Ali Al-Assie College of Sciences, Tikrit University, Tikrit, IRAQ
Keywords: Introns, SNPs, Non-coding RNA, Genetic diseases

Abstract

Introns qualify as Noncoding nucleotide sequences. In splicing, some segments of the RNA transcript (introns) are eliminated, the other segments (exons) are joining together in the formation of the coding RNAs (mRNA, rRNA and tRNA). Also, Non-coding RNA genes are parts of the intronic. On average, there are 7.8 introns and 8.8 exons per human gene. Single nucleotide polymorphisms (SNPs) are existed in the various positions through the human gene, promoters, alternating regions of exons and introns, terminator, in addition to UTRs, untranslated regions (5'- and 3'-).Therefore, many diseases have been associated with SNPs through different mechanisms. In the current review, we will discuss the several genetic and epigenetic regulations included in identifying disease susceptibility linked to numerous SNPs existing in the intronic region.

Downloads

Download data is not yet available.

References

Berget, S. M., Moore, C., & Sharp, P. A. (1977). Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proceedings of the National Academy of Sciences, 74(8), 3171-3175.

Chow, L. T., Gelinas, R. E., Broker, T. R., & Roberts, R. J. (1977). An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell, 12(1), 1-8.

Sakharkar, M. K., Chow, V. T., &Kangueane, P. (2004). Distributions of exons and introns in the human genome. In silico biology, 4(4), 387-393.

Irimia, M., & Roy, S. W. (2014). Origin of spliceosomal introns and alternative splicing. Cold Spring Harbor perspectives in biology, 6(6), a016071.

Chamary, J. V., & Hurst, L. D. (2004). Similar rates but different modes of sequence evolution in introns and at exonic silent sites in rodents: evidence for selectively driven codon usage. Molecular biology and evolution, 21(6), 1014-1023.

Ponjavic, J., Ponting, C. P., &Lunter, G. (2007). Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome research, 17(5), 556-565.

Will, C. L., &Lührmann, R. (2011). Spliceosome structure and function. Cold Spring Harbor perspectives in biology, 3(7), a003707.

Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring HarbPerspect Biol. 2011;3(7).

Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K., Patil, N., ... & Lander, E. S. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature genetics, 22(3), 231-238.

Engle, L. J., Simpson, C. L., & Landers, J. E. (2006). Using high-throughput SNP technologies to study cancer. Oncogene, 25(11), 1594-1601.

Deng, N., Zhou, H., Fan, H., & Yuan, Y. (2017). Single nucleotide polymorphisms and cancer susceptibility. Oncotarget, 8(66), 110635.

Pagenstecher, C., Wehner, M., Friedl, W., Rahner, N., Aretz, S., Friedrichs, N., ... & Mangold, E. (2006). Aberrant splicing in MLH1 and MSH2 due to exonic and intronic variants. Human genetics, 119(1-2), 9-22.

Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, Hua Y, Gueroussov S, Najafabadi HS, Hughes TR, Morris Q, Barash Y, Krainer AR, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015; 347:1254806.

Wu, H., Zhang, K., Gong, P., Qiao, F., Wang, L., Cui, H., ... & Fan, H. (2014). A novel functional TagSNP Rs7560488 in the DNMT3A1 promoter is associated with susceptibility to gastric cancer by modulating promoter activity. PLoS One, 9(3), e92911.

Zaphiropoulos, P. (2012). Genetic variations and alternative splicing: the Glioma associated oncogene 1, GLI1. Frontiers in genetics, 3, 119.

Visel, A., Rubin, E. M., &Pennacchio, L. A. (2009). Genomic views of distant-acting enhancers. Nature, 461(7261), 199-205.

Ensembl genome browser release 87[permanent dead link] (December 2016) for most values; Ensembl genome browser release 68 (July 2012) for miRNA, rRNA, snRNA, snoRNA.

Khan, M., Arno, G., Fakin, A., Parfitt, D. A., Dhooge, P. P., Albert, S., ... & Collin, R. W. (2020). Detailed phenotyping and therapeutic strategies for intronic ABCA4 variants in Stargardt disease. Molecular Therapy-Nucleic Acids.

Torrado, M., Maneiro, E., Trujillo-Quintero, J. P., Evangelista, A., Mikhailov, A. T., & Monserrat, L. (2018). A novel heterozygous Intronic mutation in the FBN1 gene contributes to FBN1 RNA Missplicing events in the Marfan syndrome. BioMed research international, 2018.

Yang, P. J., Hsieh, M. J., Hung, T. W., Wang, S. S., Chen, S. C., Lee, M. C., ... & Chou, Y. E. (2019). Effects of long noncoding RNA H19 polymorphisms on urothelial cell carcinoma development. International journal of environmental research and public health, 16(8), 1322.

Ling, H., Spizzo, R., Atlasi, Y., Nicoloso, M., Shimizu, M., Redis, R. S., ... & Calin, G. A. (2013). CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome research, 23(9), 1446-1461.

Tsukada, S., Tanaka, Y., Maegawa, H., Kashiwagi, A., Kawamori, R., & Maeda, S. (2006). Intronic polymorphisms within TFAP2B regulate transcriptional activity and affect adipocytokine gene expression in differentiated adipocytes. Molecular Endocrinology, 20(5), 1104-1111.

Hua, J. T., Ahmed, M., Guo, H., Zhang, Y., Chen, S., Soares, F., ... & He, H. H. (2018). Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell, 174(3), 564-575.

Suñé-Pou, M., Limeres, M. J., Moreno-Castro, C., Hernández-Munain, C., Suñé-Negre, J. M., Cuestas, M. L., &Suñé, C. (2020). Innovative therapeutic and delivery approaches using nanotechnology to correct splicing defects underlying disease. Frontiers in Genetics, 11, 731.

Tran, H. T. T., Takeshima, Y., Surono, A., Yagi, M., Wada, H., & Matsuo, M. (2005). A G-to-A transition at the fifth position of intron-32 of the dystrophin gene inactivates a splice-donor site both in vivo and in vitro. Molecular genetics and metabolism, 85(3), 213-219.

Broen, K., Levenga, H., Vos, J., van Bergen, K., Fredrix, H., Greupink-Draaisma, A., ... &Dolstra, H. (2011). A polymorphism in the splice donor site of ZNF419 results in the novel renal cell carcinoma-associated minor histocompatibility antigen ZAPHIR. PLoS One, 6(6), e21699.

Wong, J. J. L., Ritchie, W., Ebner, O. A., Selbach, M., Wong, J. W., Huang, Y., ... &Rasko, J. E. (2013). Orchestrated intron retention regulates normal granulocyte differentiation. Cell, 154(3), 583-595.

Yap, K., Lim, Z. Q., Khandelia, P., Friedman, B., &Makeyev, E. V. (2012). Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention. Genes & development, 26(11), 1209-1223.

Pendleton, K. E., Park, S. K., Hunter, O. V., Bresson, S. M., & Conrad, N. K. (2018). Balance between MAT2A intron detention and splicing is determined cotranscriptionally. RNA, 24(6), 778-786.

Beltran, M., Puig, I., Peña, C., García, J. M., Álvarez, A. B., Peña, R., ... & de Herreros, A. G. (2008). A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes & development, 22(6), 756-769.

Bajrami, E., &Spiroski, M. (2016). Genomic imprinting. Open access Macedonian journal of medical sciences, 4(1), 181.

Barton, S. C., Surani, M. A. H., & Norris, M. L. (1984). Role of paternal and maternal genomes in mouse development. Nature, 311(5984), 374-376.

Deng, N., Zhou, H., Fan, H., & Yuan, Y. (2017). Single nucleotide polymorphisms and cancer susceptibility. Oncotarget, 8(66), 110635.

Verhaegh, G. W., Verkleij, L., Vermeulen, S. H., den Heijer, M., Witjes, J. A., &Kiemeney, L. A. (2008). Polymorphisms in the H19 gene and the risk of bladder cancer. European urology, 54(5), 1118-1126.

Pei, J. S., Chen, C. C., Chang, W. S., Wang, Y. C., Chen, J. C., Hsiau, Y. C., ... &Bau, D. T. (2021). Significant Associations of lncRNA H19 Genotypes with Susceptibility to Childhood Leukemia in Taiwan. Pharmaceuticals, 14(3), 235.

Hombach, S., &Kretz, M. (2016). Non-coding RNAs: classification, biology and functioning. In Non-coding RNAs in colorectal cancer (pp. 3-17). Springer, Cham.

Cech, T. R., &Steitz, J. A. (2014). The noncoding RNA revolution—trashing old rules to forge new ones. Cell, 157(1), 77-94.

Hrdlickova, B., de Almeida, R. C., Borek, Z., &Withoff, S. (2014). Genetic variation in the non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(10), 1910-1922.

Gao, P., & Wei, G. H. (2017). Genomic insight into the role of lncRNAs in cancer susceptibility. International journal of molecular sciences, 18(6), 1239.

Eißmann, M., Gutschner, T., Hämmerle, M., Günther, S., Caudron-Herger, M., Groß, M., ... &Diederichs, S. (2012). Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA biology, 9(8), 1076-1087.

Kim, K., Jutooru, I., Chadalapaka, G., Johnson, G., Frank, J., Burghardt, R., ... & Safe, S. (2013). HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene, 32(13), 1616-1625.

Kogo, R., Shimamura, T., Mimori, K., Kawahara, K., Imoto, S., Sudo, T., ... & Mori, M. (2011). Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer research, 71(20), 6320-6326.

Yang, Z., Zhou, L., Wu, L. M., Lai, M. C., Xie, H. Y., Zhang, F., & Zheng, S. S. (2011). Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Annals of surgical oncology, 18(5), 1243-1250.

Sattarifard, H., Hashemi, M., Hassanzarei, S., Narouie, B., &Bahari, G. (2017). Association between genetic polymorphisms of long non coding RNA PRNCR1 and prostate cancer risk in a sample of the Iranian population. Molecular and clinical oncology, 7(6), 1152-1158.

Chung, S., Nakagawa, H., Uemura, M., Piao, L., Ashikawa, K., Hosono, N., ... & Kubo, M. (2011). Association of a novel long non‐coding RNA in 8q24 with prostate cancer susceptibility. Cancer science, 102(1), 245-252.

Yan, C., Jiang, Y., Wan, Y., Zhang, L., Liu, J., Zhou, S., & Cheng, W. (2017). Long noncoding RNA NBAT-1 suppresses tumorigenesis and predicts favorable prognosis in ovarian cancer. OncoTargets and therapy, 10, 1993.

Rojano, E., Seoane, P., Ranea, J. A., & Perkins, J. R. (2019). Regulatory variants: from detection to predicting impact. Briefings in bioinformatics, 20(5), 1639-1654.

Ramírez-Bello, J., Vargas-Alarcón, G., & Fragoso, J. M. (2013). Single nucleotide polymorphisms (SNPs): functional implications of regulatory-SNP (rSNP) and structural RNA (srSNPs) in complex diseases. Gaceta medica de Mexico, 149(2), 220-228.

Stadhouders, R., van den Heuvel, A., Kolovos, P., Jorna, R., Leslie, K., Grosveld, F., & Soler, E. (2012). Transcription regulation by distal enhancers: who’s in the loop?. Transcription, 3(4), 181-186.

Ostrovsky, O., Grushchenko-Polaq, A. H., Beider, K., Mayorov, M., Canaani, J., Shimoni, A., ... &Nagler, A. (2018). Identification of strong intron enhancer in the heparanase gene: effect of functional rs4693608 variant on HPSE enhancer activity in hematological and solid malignancies. Oncogenesis, 7(6), 1-14.

Bayram, S., Sümbül, A. T., &Dadaş, E. (2016). A functional HOTAIR rs12826786 C> T polymorphism is associated with breast cancer susceptibility and poor clinicopathological characteristics in a Turkish population: a hospital-based case–control study. Tumor Biology, 37(4), 5577-5584.

Zhu, H., Lv, Z., An, C., Shi, M., Pan, W., Zhou, L., ... & Yang, M. (2016). Onco-lncRNA HOTAIR and its functional genetic variants in papillary thyroid carcinoma. Scientific reports, 6(1), 1-7.

Qiu, H., Wang, X., Guo, R., Liu, Q., Wang, Y., Yuan, Z., ... & Shi, H. (2017). HOTAIR rs920778 polymorphism is associated with ovarian cancer susceptibility and poor prognosis in a Chinese population. Future oncology, 13(4), 347-355.

Zhu, H., Lv, Z., An, C., Shi, M., Pan, W., Zhou, L., ... & Yang, M. (2016). Onco-lncRNA HOTAIR and its functional genetic variants in papillary thyroid carcinoma. Scientific reports, 6(1), 1-7.

Pan, W., Liu, L., Wei, J., Ge, Y., Zhang, J., Chen, H., ... & Yang, M. (2016). A functional lncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility. Molecular carcinogenesis, 55(1), 90-96.

Fairoozy, R. H., White, J., Palmen, J., Kalea, A. Z., & Humphries, S. E. (2016). Identification of the functional variant (s) that explain the low-density lipoprotein receptor (LDLR) GWAS SNP rs6511720 association with lower LDL-C and risk of CHD. PloS one, 11(12), e0167676.

Wright, J. B., Brown, S. J., & Cole, M. D. (2010). Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Molecular and cellular biology, 30(6), 1411-1420.

Jing, H., Vakoc, C. R., Ying, L., Mandat, S., Wang, H., Zheng, X., &Blobel, G. A. (2008). Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Molecular cell, 29(2), 232-242.

Stadhouders, R., Thongjuea, S., Andrieu‐Soler, C., Palstra, R. J., Bryne, J. C., Van Den Heuvel, A., ... & Soler, E. (2012). Dynamic long‐range chromatin interactions control Myb proto‐oncogene transcription during erythroid development. The EMBO journal, 31(4), 986-999.

Stadhouders, R., van den Heuvel, A., Kolovos, P., Jorna, R., Leslie, K., Grosveld, F., & Soler, E. (2012). Transcription regulation by distal enhancers: who’s in the loop?. Transcription, 3(4), 181-186.

Ramsay, R. G., &Gonda, T. J. (2008). MYB function in normal and cancer cells. Nature Reviews Cancer, 8(7), 523-534.

Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science, 267(5203), 1456-1462.

Evan, G. I., &Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342-348.

Lowe, S. W., & Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis, 21(3), 485-495.

Ghobrial, I. M., Witzig, T. E., & Adjei, A. A. (2005). Targeting apoptosis pathways in cancer therapy. CA: a cancer journal for clinicians, 55(3), 178-194.

Hu, Z., Li, C., Chen, K., Wang, L. E., Sturgis, E. M., Spitz, M. R., & Wei, Q. (2008). Single nucleotide polymorphisms in selected apoptotic genes and BPDE-induced apoptotic capacity in apparently normal primary lymphocytes: a genotype-phenotype correlation analysis. Journal of cancer epidemiology, 2008.

Wynn, S. L. (2020). First Do No Harm: Examining Deliberate Practice to Improve MCAT Reasoning Among Black Pre-Meds (Doctoral dissertation, Northern Arizona University).

Turnpenny, P. D., Ellard, S., Cleaver, R., &Mbchb, B. S. C. (2021). Emery's Elements of Medical Genetics E-Book. Elsevier.

Chaudhry, A. S., Prasad, B., Shirasaka, Y., Fohner, A., Finkelstein, D., Fan, Y., ... & Schuetz, E. G. (2015). The CYP2C19 intron 2 branch point SNP is the ancestral polymorphism contributing to the poor metabolizer phenotype in livers with CYP2C19* 35 and CYP2C19* 2 alleles. Drug Metabolism and Disposition, 43(8), 1226-1235.

Nicod, N., Pradas-Juni, M., &Gomis, R. (2014). Role of the single nucleotide polymorphism rs7903146 of TCF7L2 in inducing nonsense-mediated decay. SpringerPlus, 3(1), 1-5.

Published
2021-04-20
How to Cite
Maan Hasan Salih, Adnan F Al-Azzawie, & Akeel Hussain Ali Al-Assie. (2021). Intronic SNPs and Genetic Diseases: A Review. International Journal for Research in Applied Sciences and Biotechnology, 8(2), 267-274. https://doi.org/10.31033/ijrasb.8.2.36
Section
Articles