A Comprehensive Review of Molecular Biology and Genetics of Cataract

  • Harshal Wasnik Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, INDIA
  • Rishi Gandhi Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, INDIA
  • Niraj Patil
  • Rajendra Behera
  • Anand Golait
  • Tushar Patel
  • Tirthajit Baruah
Keywords: Cataract, Extrinsic environmental factors, Gene families, GWAS, Intrinsic cell biology factors, Pharmacological strategy


Cataract is one of the oldest diseases. Even in the 21st century, the disease is often neglected and treated as an insignificant threat. Although the facts and figures account for the opposite, it is found that globally cataract holds for more than 50% of blindness. Cataract is also one of the first five immediate focus areas of a global Initiative called 'Vision 2020', which intends to eradicate preventable blindness by 2020. The disease is termed as multifactorial; has various extrinsic environmental and intrinsic cell biology factors determining its progress. Over the years, enormous progress has been made towards cataract including the identification of its risk factors. Yet the current scientific knowledge is far from developing a proven preventive or pharmacological strategy for it. The surgical method has been the only way to cure cataract by far. In this paper, we tried to give a comprehensive bird eye view for the disease; we have (a) reviewed briefly the recent progress in delineating the molecular biology and risk factors of cataract (b) delved into genetics of the cataract and overviewed crucial gene families related to the disease identified through single-gene mutations and Genome-Wide Association Studies (GWAS). 


Download data is not yet available.


WHO | Priority eye diseases. 2018 [cited 5 Jun 2020]. Available: https://www.who.int/blindness/causes/priority/en/index1.html

WHO | Global data on visual impairment. 2017 [cited 10 Dec 2020].

Available:http://www.who.int/blindness/publications/globa ldata/en/

World report on vision. [cited 10 Dec 2020]. Available:https://www.who.int/publications/i/item/world-report-on- vision.

Keeffe J, Taylor HR, Fotis K, Pesudovs K, Flaxman SR, Jonas JB, et al. Prevalence and causes of vision loss in Southeast Asia and Oceania: 1990–2010. British Journal of Ophthalmology. 2014. pp. 586–591. doi:10.1136/bjophthalmol-2013-304050.

Khairallah M, Kahloun R, Bourne R, Limburg H, Flaxman SR, Jonas JB, et al. Number of People Blind or Visually Impaired by Cataract Worldwide and in World Regions, 1990 to 2010. Investigative Opthalmology & Visual Science. 2015. p. 6762. doi:10.1167/iovs.15-17201.

Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017;5: e888– e897.

West S. Epidemiology of cataract: accomplishments over 25 years and future directions. Ophthalmic Epidemiol. 2007;14: 173–178.

Vajpayee RB, Joshi S, Saxena R, Gupta SK. Epidemiology of cataract in India: combating plans and strategies. Ophthalmic Res. 1999;31: 86–92.

Robman L, Taylor H. External factors in the development of cataract. Eye. 2005. pp. 1074–1082. doi:10.1038/sj.eye.6701964.

Kalantan H. Posterior polar cataract: A review. Saudi J Ophthalmol. 2012;26: 41–49.

Chodick G, Bekiroglu N, Hauptmann M, Alexander BH, Freedman DM, Doody MM, et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol. 2008;168: 620–631.

McCarty CA, Taylor HR. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. Dev Ophthalmol. 2002;35: 21–31.

Babizhayev MA, Yegorov YE. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases. Am J Ther. 2016;23: e98–117.

Lou MF. Thiol Regulation in the Lens. Journal of Ocular Pharmacology and Therapeutics. 2000. pp. 137– 148. doi:10.1089/jop.2000.16.137.

Jones DP, Mody VC Jr, Carlson JL, Lynn MJ, Sternberg P Jr. Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med. 2002;33: 1290–1300.

Kleiman NJ, Spector A. DNA single strand breaks in human lens epithelial cells from patients with cataract. Curr Eye Res. 1993;12: 423–431.

Zhang J, Wu J, Yang L, Zhu R, Yang M, Qin B, et al. DNA damage in lens epithelial cells and peripheral lymphocytes from age-related cataract patients. Ophthalmic Res. 2014;51: 124–128.

Campalans A, Kortulewski T, Amouroux R, Menoni H, Vermeulen W, Radicella JP. Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Res. 2013;41: 3115–3129.

Carter RJ, Parsons JL. Base Excision Repair, a Pathway Regulated by Posttranslational Modifications. Molecular and Cellular Biology. 2016. pp. 1426–1437. doi:10.1128/mcb.00030-16.

Wang W, Schaumberg DA, Park SK. Cadmium and lead exposure and risk of cataract surgery in U.S. adults. Int J Hyg Environ Health. 2016;219: 850–856.

Ye J, He J, Wang C, Wu H, Shi X, Zhang H, et al. Smoking and risk of age-related cataract: a meta-analysis. Invest Ophthalmol Vis Sci. 2012;53: 3885–3895.

Sella R, Afshari NA. Nutritional effect on age-related cataract formation and progression. Curr Opin Ophthalmol. 2019;30: 63–69.

Roberts JE, Dennison J. The Photobiology of Lutein and Zeaxanthin in the Eye. J Ophthalmol. 2015;2015: 687173.

Townend BS, Townend ME, Flood V, Burlutsky G, Rochtchina E, Wang JJ, et al. Dietary macronutrient intake and five-year incident cataract: the blue mountains eye study. Am J Ophthalmol. 2007; 143: 932–939.

Kang JH, Wu J, Cho E, Ogata S, Jacques P, Taylor A, et al. Contribution of the Nurses’ Health Study to the Epidemiology of Cataract, Age-Related Macular Degeneration, and Glaucoma. American Journal of Public Health. 2016. Pp. 1684–1689. doi:10.2105/ajph.2016.303317.

Wei L, Liang G, Cai C, Lv J. Association of vitamin C with the risk of age-related cataract: a meta-analysis. Acta Ophthalmol. 2016;94: e170–6.

Borchman D, Yappert MC. Lipids and the ocular lens. Journal of Lipid Research. 2010. pp. 2473–2488. doi:10.1194/jlr.r004119.

Lu M, Taylor A, Chylack LT, Rogers G, Hankinson SE, Willett WC, et al. Dietary Linolenic Acid Intake Is Positively Associated with Five-Year Change in Eye Lens Nuclear Density. Journal of the American College of Nutrition. 2007. pp. 133–140. doi:10.1080/07315724.2007.10719594.

Kloeckener-Gruissem B, Vandekerckhove K, Nürnberg G, Neidhardt J, Zeitz C, Nürnberg P, et al. Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am J Hum Genet. 2008;82: 772–779.

Bowes O, Baxter K, Elsey T, Snead M, Cox T. Hereditary hyperferritinaemia cataract syndrome. Lancet. 2014;383: 1520.

Yasmeen A, Riazuddin SA, Kaul H, Mohsin S, Khan M, Qazi ZA, et al. Autosomal recessive congenital cataract in consanguineous Pakistani families is associated with mutations in GALK1. Mol Vis. 2010;16: 682–688.

Morrow JD, Frei B, Longmire AW, Michael Gaziano J, Lynch SM, Shyr Y, et al. Increase in Circulating Products of Lipid Peroxidation (F2-Isoprostanes) in Smokers — Smoking as a Cause of Oxidative Damage. New England Journal of Medicine. 1995. pp. 1198–1203. doi:10.1056/nejm199505043321804.

Stryker WS, Scott Stryker W, Kaplan LA, Stein EA, Stampfer MJ, Sober A, et al. THE RELATION OF DIET, CIGARETTE SMOKING, AND ALCOHOL CONSUMPTION TO PLASMA BETA-CAROTENE AND ALPHA-TOCOPHEROL LEVELS. American Journal of Epidemiology. 1988. pp. 283–296. doi:10.1093/oxfordjournals.aje.a114804.

Raju P, George R, Ve Ramesh S, Arvind H, Baskaran M, Vijaya L. Influence of tobacco use on cataract development. British Journal of Ophthalmology. 2006. pp. 1374–1377. doi:10.1136/bjo.2006.097295.

Bloemendal H. The vertebrate eye lens. Science. 1977. pp. 127–138. doi:10.1126/science.877544.

Hoenders HJ, Bloemendal H. Lens proteins and aging. J Gerontol. 1983;38: 278–286.

Mörner CT. Untersuchung der Proteїnsubstanzen in den leichtbrechenden Medien des Auges I. Zeitschrift für physiologische Chemie. 1894. Available: https://www.degruyter.com/view/j/bchm1.1894.18.issue- 1/bchm1.1894.18.1.61/bchm1.1894.18.1.61.xml.

Wistow GJ, Piatigorsky J. Lens Crystallins: The Evolution and Expression of Proteins for a Highly Specialized Tissue. Annual Review of Biochemistry. 1988. pp. 479–504. doi:10.1146/annurev.bi.57.070188.002403.

Horwitz J, Bova MP, Ding L-L, Haley DA, Stewart PL. Lens α-crystallin: Function and structure. Eye. 1999. pp. 403–408. doi:10.1038/eye.1999.114.

Singh K, Zewge D, Groth-Vasselli B, Farnsworth PN. A comparison of structural relationships among α- crystallin, human Hsp27, γ-crystallins and βB2-crystallin. Int J Biol Macromol. 1996;19: 227–233.

Graw J. Genetics of crystallins: cataract and beyond. Exp Eye Res. 2009;88: 173–189.

Nagaraju GP, Basha R, Rajitha B, Alese OB, Alam A, Pattnaik S, et al. Aquaporins: Their role in gastrointestinal malignancies. Cancer Letters. 2016. pp. 12–18. doi:10.1016/j.canlet.2016.01.003.

Chepelinsky A. B. (2009). Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts. Handbook of experimental pharmacology, (190), 265–297. https://doi.org/10.1007/978-3-540-79885-9_14

Sanderson J, Marcantonio JM, Duncan G. Calcium ionophore induced proteolysis and cataract: inhibition by cell permeable calpain antagonists. Biochem Biophys Res Commun. 1996;218: 893–901.

Saba S, Ghahramani M, Yousefi R. A Comparative Study of the Impact of Calcium Ion on Structure, Aggregation and Chaperone Function of Human αA- crystallin and its Cataract- Causing R12C Mutant. Protein Pept Lett. 2017;24: 1048–1058.

Kumar P, Vyas RK, Soni Y, Sharma P. COMPARATIVE STUDY OF SERUM ELECTROLYTE LEVEL IN CATARACT PATIENT WITH HEALTHY CONTROLS IN WESTERN RAJASTHAN. J Appl Sci Res. 2019;8. Available: http://worldwidejournals.org/index.php/ijsr/article/view/15 4.

Mirsamadi M, Nourmohammadi I, Imamian M. Comparative study of serum Na(+ )and K(+ ) levels in senile cataract patients and normal individuals. Int J Med Sci. 2004;1: 165–169.

Mathur G, Pai V. Comparison of serum sodium and potassium levels in patients with senile cataract and age- matched individuals without cataract. Indian J Ophthalmol. 2016;64: 446–447.

Shukla N, Moitra JK, Trivedi RC. Determination of lead, zinc, potassium, calcium, copper and sodium in human cataract lenses. Science of The Total Environment. 1996. pp. 161–165. doi:10.1016/0048-9697(95)05006-x.

Khan AA, Rizvi SWA, Amitava AK, Moin S, Siddiqui Z, Yusuf F, et al. Serum Na+ and K+ as risk factors in age- related cataract: An Indian perspective. Sudanese Journal of Ophthalmology. 2014;6: 10.

Shukla N, Moitra JK, Trivedi RC. Determination of lead, zinc, potassium, calcium, copper and sodium in human cataract lenses. Science of The Total Environment. 1996. pp. 161–165. doi:10.1016/0048-9697(95)05006-x.

Schaumberg DA, Mendes F, Balaram M, Dana MR, Sparrow D, Hu H. Accumulated lead exposure and risk of age-related cataract in men. JAMA. 2004;292: 2750–2754.

Cumurcu T, Mendil D, Etikan I. Levels of zinc, iron, and copper in patients with pseudoexfoliative cataract. Eur J Ophthalmol. 2006;16: 548–553.

Balaji M, Sasikala K, Ravindran T. Copper levels in human mixed, nuclear brunescence, and posterior subcapsular cataract. Br J Ophthalmol. 1992;76: 668–669.

Dawczynski J, Blum M, Winnefeld K, Strobel J. Increased content of zinc and iron in human cataractous lenses. Biol Trace Elem Res. 2002;90: 15–23.

Quintanar L, Domínguez-Calva JA, Serebryany E, Rivillas-Acevedo L, Haase-Pettingell C, Amero C, et al. Copper and Zinc Ions Specifically Promote Nonamyloid Aggregation of the Highly Stable Human γ-D Crystallin. ACS Chem Biol. 2016;11: 263–272.

Cekic O. Effect of cigarette smoking on copper, lead, and cadmium accumulation in human lens. Br J Ophthalmol. 1998;82: 186–188.

Shiels A, Fielding Hejtmancik J. Mutations and mechanisms in congenital and age-related cataracts. Experimental Eye Research. 2017. pp. 95–102. doi:10.1016/j.exer.2016.06.011.

Ritchie MD, Verma SS, Hall MA, Goodloe RJ, Berg RL, Carrell DS, et al. Electronic medical records and genomics (eMERGE) network exploration in cataract: several new potential susceptibility loci. Mol Vis. 2014;20: 1281–1295.

Tan W, Hou S, Jiang Z, Hu Z, Yang P, Ye J. Association of EPHA2 polymorphisms and age-related cortical cataract in a Han Chinese population. Mol Vis. 2011;17: 1553.

Sundaresan P, Ravindran RD, Vashist P, Shanker A, Nitsch D, Talwar B, et al. EPHA2 polymorphisms and age- related cataract in India. PLoS One. 2012;7: e33001.

Yonova E, Nag A, Venturini C, Hysi P, Williams K, Spector T, et al. Role of ephrin genes in cortical cataract pathogenesis. Invest Ophthalmol Vis Sci. 2013;54: 899– 899.

Liao J, Su X, Chen P, Wang X, Xu L, Li X, et al. Meta- analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Hum Mol Genet. 2014;23: 6119–6128.

Bera S, Abraham EC. The alphaA-crystallin R116C mutant has a higher affinity for forming heteroaggregates with alphaB-crystallin. Biochemistry. 2002;41: 297–305.

Santhiya ST. Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts. Journal of Medical Genetics. 2002. pp. 352–358. doi:10.1136/jmg.39.5.352

Gonzalez-Huerta LM, Messina-Baas OM, Cuevas- Covarrubias SA. A family with autosomal dominant primary congenital cataract associated with a CRYGC mutation: evidence of clinical heterogeneity. Mol Vis. 2007;13: 1333–1338.

Reddy MA, Ashwin Reddy M, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Survey of Ophthalmology. 2004. pp. 300–315. doi:10.1016/j.survophthal.2004.02.013.

Son AI, Cooper MA, Sheleg M, Sun Y, Kleiman NJ, Zhou R. Further analysis of the lens of ephrin-A5-/- mice: development of postnatal defects. Mol Vis. 2013;19: 254– 266.

Zantek ND, Azimi M, Fedor-Chaiken M, Wang B, Brackenbury R, Kinch MS. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ. 1999;10: 629–638.

Fang WB, Ireton RC, Zhuang G, Takahashi T, Reynolds A, Chen J. Overexpression of EPHA2 receptor destabilizes adherens junctions via a RhoA-dependent mechanism. J Cell Sci. 2008;121: 358–368.

Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133: 38–52.

Zhang T, Hua R, Xiao W, Burdon KP, Bhattacharya SS, Craig JE, et al. Mutations of theEPHA2receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Human Mutation. 2009. pp. E603–E611. doi:10.1002/humu.20995.

Kaul H, Riazuddin SA, Shahid M, Kousar S, Butt NH, Zafar AU, et al. Autosomal recessive congenital cataract linked to EPHA2 in a consanguineous Pakistani family. Mol Vis. 2010;16: 511–517.

Park JE, Son AI, Hua R, Wang L, Zhang X, Zhou R. Human cataract mutations in EPHA2 SAM domain alter receptor stability and function. PLoS One. 2012;7: e36564.

Kumar NM, Gilula NB. The gap junction communication channel. Cell. 1996;84: 381–388.

Shiels A, Bennett TM, Hejtmancik JF. Cat-Map: putting cataract on the map. Mol Vis. 2010;16: 2007–2015.

How to Cite
Harshal Wasnik, Rishi Gandhi, Niraj Patil, Rajendra Behera, Anand Golait, Tushar Patel, & Tirthajit Baruah. (2021). A Comprehensive Review of Molecular Biology and Genetics of Cataract. International Journal for Research in Applied Sciences and Biotechnology, 8(2), 11-20. https://doi.org/10.31033/ijrasb.8.2.2