Saccharomyces cerevisiae Bio-Ethanol Production as an Alternative Source of Sustainable Energy

Ethanol Production using Saccharomyces cerevisiae

  • Benthai Benjamin Nigerian Defence Academy
  • Dr Victoria Bakare Department of Biological Sciences, Nigerian Defence Academy kaduna
  • Thompson E. Effiong Department of Biological Sciences, Nigerian Defence Academy kaduna
Keywords: Biofuels, Fermentation, Feedstock, Yeast


Current world energy demand is based on fossil fuels, which will vanish in coming decades. Renewable energy especially biofuels has attracted great interest as solutions to the current energy problem. Among available biofuel resources, bioethanol seems to be an efficient alternative thus, Saccharomyces cerevisiae a well-established organism for bioethanol production. However, during fermentation process, yeast cells experience various stress conditions and inhibitors hampering its efficacy for commercial bioethanol production. To overcome these yeast cells, adopt different signal transduction pathways. In this review, common and least explored carbon feedstock which can be readily converted into bioethanol are highlighted. The various protectants, genes, and pathways which can be tempered to engineer yeast strains are discussed. Thus, we have suggested strategies to utilize this lucrative alternative for sustainable bioethanol production.


Download data is not yet available.

Author Biographies

Dr Victoria Bakare, Department of Biological Sciences, Nigerian Defence Academy kaduna

Chief Technologist, Department of Biological Sciences, Nigerian Defence Academy kaduna

Thompson E. Effiong, Department of Biological Sciences, Nigerian Defence Academy kaduna

Assistant Chief Technologist, Department of Biological Sciences, Nigerian Defence Academy kaduna


Bai, F. W., Chen, L. J., Zhang, Z., Anderson, W. A., & Moo-Young, M. (2004). Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. Journal of Biotechnology, 110(3), 287–293.

Cartwright, C. P., juroszek, J.-R., Beavan, M. J., Ruby, F. M. S., De Morais, S. M. F., & Rose, A. H. (1986). Ethanol Dissipates the Proton-motive Force across the Plasma Membrane of Saccharomyces cerevisiae. Microbiology, 132(2), 369–377.

Cheng, J. J., & Timilsina, G. R. (2011). Status and barriers of advanced biofuel technologies: A review. Renewable Energy, 36(12), 3541–3549.

Cheng, Y., Du, Z., Zhu, H., Guo, X., & He, X. (2016). Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress. Scientific Reports, 6(1), 31311.

Gasch, A. P., & Werner-Washburne, M. (2002). The genomics of yeast responses to environmental stress and starvation. Functional & Integrative Genomics, 2(4–5), 181–192.

Godfray, H. C. J., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Nisbett, N., Pretty, J., Robinson, S., Toulmin, C., & Whiteley, R. (2010). The future of the global food system. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2769–2777.

Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2008). Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae. Biotechnology Letters, 30(11), 1953–1958.

Han, S.-F., Jin, W.-B., Tu, R.-J., & Wu, W.-M. (2015). Biofuel production from microalgae as feedstock: Current status and potential. Critical Reviews in Biotechnology, 35(2), 255–268.

Ibeas, J. I., & Jimenez, J. (1997). Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Applied and Environmental Microbiology, 63(1), 7–12.

Inoue, T., Iefuji, H., Fujii, T., Soga, H., & Satoh, K. (2000). Cloning and Characterization of a Gene Complementing the Mutation of an Ethanol-sensitive Mutant of Sake Yeast. Bioscience, Biotechnology, and Biochemistry, 64(2), 229–236.

Jeffries, T. (1985). Emerging technology for fermenting -xylose. Trends in Biotechnology, 3(8), 208–212.

Jeffries, T. W., Grigoriev, I. V., Grimwood, J., Laplaza, J. M., Aerts, A., Salamov, A., Schmutz, J., Lindquist, E., Dehal, P., Shapiro, H., Jin, Y.-S., Passoth, V., & Richardson, P. M. (2007). Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnology, 25(3), 319–326.

Klimacek, M., Kirl, E., Krahulec, S., Longus, K., Novy, V., & Nidetzky, B. (2014). Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 13(1), 37.

Klis, F. M., Boorsma, A., & De Groot, P. W. J. (2006). Cell wall construction inSaccharomyces cerevisiae. Yeast, 23(3), 185–202.

Konishi, J., Fukuda, A., Mutaguchi, K., & Uemura, T. (2015). Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes. Biotechnology Letters, 37(8), 1623–1630.

Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729.

Lam, F. H., Ghaderi, A., Fink, G. R., & Stephanopoulos, G. (2014). Engineering alcohol tolerance in yeast. Science, 346(6205), 71–75.

Le Borgne, S. (2012). Genetic Engineering of Industrial Strains of Saccharomyces cerevisiae. In A. Lorence (Ed.), Recombinant Gene Expression (Vol. 824, pp. 451–465). Humana Press.

Lee, D. H. (2011). Algal biodiesel economy and competition among bio-fuels. Bioresource Technology, 102(1), 43–49.

Lucero, P., Peñalver, E., Moreno, E., & Lagunas, R. (2000). Internal Trehalose Protects Endocytosis from Inhibition by Ethanol in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 66(10), 4456–4461.

Mishra, P., & Prasad, R. (1989). Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 30(3).

Ostergaard, S., Olsson, L., Johnston, M., & Nielsen, J. (2000). Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nature Biotechnology, 18(12), 1283–1286.

Puria, R., Mannan, M. A., Chopra-Dewasthaly, R., & Ganesan, K. (2009). Critical role of RPI1 in the stress tolerance of yeast during ethanolic fermentation. FEMS Yeast Research, 9(8), 1161–1171.

Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597.

Stanley, D., Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology.

Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19(2), 63–102.

Wisselink, H. W., Toirkens, M. J., del Rosario Franco Berriel, M., Winkler, A. A., van Dijken, J. P., Pronk, J. T., & van Maris, A. J. A. (2007). Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of l-Arabinose. Applied and Environmental Microbiology, 73(15), 4881–4891.

Yasuda, M., Nagai, H., Takeo, K., Ishii, Y., & Ohta, K. (2014). Bio-ethanol production through simultaneous saccharification and co-fermentation (SSCF) of a low-moisture anhydrous ammonia (LMAA)-pretreated napiegrass (Pennisetum purpureum Schumach). SpringerPlus, 3(1), 333.

You, K. M., Rosenfield, C.-L., & Knipple, D. C. (2003). Ethanol Tolerance in the Yeast Saccharomyces cerevisiae Is Dependent on Cellular Oleic Acid Content. Applied and Environmental Microbiology, 69(3), 1499–1503.

How to Cite
Benjamin, B., Bakare, V., & Effiong E., T. (2020). Saccharomyces cerevisiae Bio-Ethanol Production as an Alternative Source of Sustainable Energy: Ethanol Production using Saccharomyces cerevisiae . International Journal for Research in Applied Sciences and Biotechnology, 7(6), 190-194.