Space Microbiology: Modern Research and Advantages for Human Colonization on Mars

  • Deep Dey
Keywords: The ISS as a Microbial Observatory, Planetary Exploration, Discoveries, Experiments, Microbes Tested in Outer Space, Extremophiles, Antibiotic and Food Production in Outer Space, Alcohol Production by Bacteria in Outer Space, Changes in Bacterial Invasion, Changes in Bacterial Adaptability in Environment, Changes in Antibiotic Resistance, Advantages of Space Microbiology for Human Colonization on Mars, Benefits on Microbial Observatory on ISS, Multipurpose Facilities Available on ISS


Astromicrobiology or exomicrobiology, is the study of microorganisms in outer space. Microorganisms in outer space are most wide spread form of life on Earth, and are capable of colonising any environment, this article usually focus on microbial life in the field of astrobiology. Microorganisms exhibit high adaptability to extreme environments of outer space via phenotypic and genetic changes. These changes may affect astronauts in the space environment as well as on earth because mutant microbes will inevitably return with the spacecraft. In this article, the advantages and disadvantages of microbes in outer space are discussed. We all know that outer space is extreme and very complex environment, microorganisms readily adapt to changes in environmental variables, such as weightlessness, cosmic radiation, temperature, pressure and nutrient levels, and these microorganisms exhibit a variety of morphological and physiological changes. Space conditions may significantly increase the mutation frequency of certain genes in microorganisms, which could allow the cultivation of the bacterial mutants, followed by screening of the bacteria for large scale production. Also we can extract microbial secondary metabolites as medicine, flavouring and nutritional drugs. This article provides the planetary exploration and also provides the microbial observatory program on ISS. The aim of this article will also help us to determine the benefits of bacteria and other microorganisms in case of “Human colonization on Mars”.


Download data is not yet available.


Davila, Alfonso (10 September 2010). Astromicrobiology (PDF). Encyclopedia of Life Sciences. doi: 10.1002/9780470015902.a0021 899 . ISBN 978-0470016176. Retrieved 12 May 2016.

Cohen, Mark (2003). "Global Overview: Returned Astrobiology Sample Mission Architectures" . SAE International. 2675.

Horneck, Gerda (2010). "Space Microbiology" . Microbiology and Molecular Biology Reviews. 74 (1): 121–156. doi: 10.1128/mmbr.00

“Apollo 7to 11: Medical Concerns and Results.” NASA Technical Memorandum X-58034.

Berry, D. and P. A. Volz (1979). “Phosphate uptake in Saccharomyces cerevisiae Hansen wild type and phenotypes exposed to space flight irradiation.” Appl Environ Microbiol 38(4): 751-753.

Bouloc, P. and R. D’Ari (1991). “Escherichia coli metabolism in space.” J Gen Microbiol 137(12): 2839-2843.

Bucker, H., Facius, R., Hildebrand, D., Horneck, G. (1975). “Results of the Bacillus subtilis Unit of the Biostack II Experiment: Physical Characteristics and Biological Effects of Individual Cosmic HZE Particles.” Life Sciences and Space Research 13: 161-166.

Buels, E., R. Van Houdt, N. Leys, C. Dijkstra, O. Larkin and J. Mahillon (2009). “Bacillus thuringiensis conjugation in simulated microgravity.” Astrobiology 9: 797805.

Burge, H. A., Ed. (1995). Bioaerosols. Boston, CRC Press. Castro, S. L., M. Nelman-Gonzalez, C. A. Nickerson and C.

M. Ott (2011). “Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear culture of Staphylococcus aureus.” Appl Environ Microbiol 77(18): 6368-6378.

Castro, V. A., A. N. Thrasher, M. Healy, C. M. Ott and D. L. Pierson (2004). “Microbial characterization during the early habitation of the International Space Station.” Microb Ecol 47(2): 119-126.

Ciferi, O., Tiboni, O., Orlandoni, A.M., Marchesi, M.L. (1988). “The effects of microgravity on genetic recombination in Escherichia coli.” In: Biorack on Spacelab D1: An Overview of the First Flight of Biorack, an ESA Facility for Life Sciences Research in Microgravity.

Cohen, M. D., J. T. Zelikoff and R. W. Schlesinger, Eds. (2000). Pulminary Immunotoxicology. Boston, Kluwer Academic.

Corsi, R. L., K. A. Kinney and H. Levin (2012). “Microbiomes of built environments: 2011 symposium highlights and workgroup recommendations.” Indoor Air.

Olsson-Francis, K.; Cockell, C. S. (2010). "Experimental methods for studying microbial survival in extraterrestrial environments" (PDF). Journal of Microbiological Methods. 80 (1): 1–13. doi: 10.1016/j.mimet.2009.10.004 . PMID

19854226 . NASA – Spaceflight Alters Bacterial Social Networks (2013)

Rothschild, L. J.; Mancinelli, R. L. (2001). "Life in extreme environments". Nature. 409 (6823): 1092–101.

Nicholson, W. L.; Moeller, R.; Horneck, G. (2012). "Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT". Astrobiology. 12 (5): 469–86. Bibcode: doi: 2012AsBio..12..469N . 10.1089/ast.2011.0748 . PMID 22680693 .

Dublin, M.; Volz, P. A. (1973). "Spacerelated research in mycology concurrent with the first decade of manned space exploration". Space Life Sciences. 4 (2): 223–30. Bibcode: doi: 1973SLSci...4..223D . 10.1007/BF00924469 . PMID 4598191 .

Taylor, G. R.; Bailey, J. V.; Benton, E. V. (1975). "Physical dosimetric evaluations in the Apollo 16 microbial response experiment". Life Sciences and Space Research. 13: 135–41. PMID 11913418 .

Olsson-Francis, K.; de la Torre, R.; Towner, M. C.; Cockell, C. S. (2009). "Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth concurrent with the first decade of manned space exploration". Space Life Sciences. 4 (2): 223–30. Bibcode: doi: 1973SLSci...4..223D . 10.1007/BF00924469 . PMID 4598191 .

Horneck, G. (2012). 6439981 . "Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes— Experiment PROTECT of the EXPOSE-E Mission" . Astrobiology. 12 (5): 445–56.

Hotchin, J.; Lorenz, P.; Hemenway, C. (1965). "Survival of Micro-Organisms in Space". Nature. 206 (4983): 442445. Bibcode: doi: 1965Natur.206..442H . 10.1038/206442a0 .

Koike, J. (1996). "Fundamental studies concerning planetary quarantine in space". Advances in Space Research. 18 (1–2): 339–44. Bibcode: doi: 1996AdSpR..18..339K . 10.1016/0273-1177(95)00825-Y .

Mancinelli, R. L. (January 2015). "The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space.

Horneck G, Klaus DM, Mancinelli RL. Space microbiology. Microbiol. Mol. Biol. Rev. 74(1), 121–156 (2010).

Wilson JW, Ott CM, Honer Zu Bentrup K et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl Acad. Sci. USA 104(41), 16299–16304 (2007).

Wilson JW, Ott CM, Quick L et al. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PloS One 3(12), e3923 (2008).

Allen CA. The effects of low-shear modeled microgravity on Streptococcus pneumoniae and adherent-invasive Escherichia coli. PhD Disertation of The University of Texas Medical Branch. 45–52 (2007).

Allen CA, Galindo CL, Pandya U, Watson DA, Chopra AK, Niesel DW. Transcription profiles of Streptococcus pneumoniae grown under different conditions of normal gravitation. Acta Astronaut. 60(4–7), 433–444 (2007).

Taylor PW, Sommer AP. Towards rational treatment of bacterial infections during extended space travel. Int. J. Antimicrob. Agents 26(3), 183–187 (2005).

Tixador R, Richoilley G, Gasset G et al. Preliminary results of Cytos 2 experiment. Acta Astronaut. 12(2), 131–134 (1985).

Lapchine L, Moatti N, Gasset G, Richoilley G, Templier J, Tixador R. Antibiotic activity in space. Drugs Exp. Clin. Res. 12(12), 933–938 (1986).

Fang A, Pierson DL, Mishra SK, Koenig DW, Demain AL. Secondary metabolism in simulated microgravity: beta-lactam production by Streptomyces clavuligerus. J. Indust. Microbiol. Biotechnol. 18(1), 22–25 (1997).

Bochner BR, Gadzinski P, Panomitros E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res. 11(7), 1246–1255 (2001).

Kyrpides NC. Fifteen years of microbial genomics: meeting the challenges and fulfilling the dream. Nat. Biotechnol. 27(7), 627–632 (2009).

Crabbe A, Schurr MJ, Monsieurs P et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl. Environ. Microbiol. 77(4), 1221–1230 (2011)

Berg, T., Firth, N., Apisiridej, S., Hettiaratchi, A., Leelarporn, A., and Skurray, R. A. (1998).

Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J. Bacteriol. 180, 4350–4359.

Bolhuis, A., Handa, L., Marshalla, J. E., Richards, A. D., Rodger, A., and AldrichWright, J. (2011).

Antimicrobial activity of ruthenium-based intercalators. Eur. J. Pharmaceut. Sci. 42, 313–317. doi: 10.1016/j.ejps.2010.12.004 Broszat, M. (2014). Verbreitung von Antibiotikaresistenzen und pathogenen Bakterien sowie Untersuchungen zu horizontalem Gentransfer in Abwasserrieselfeldern des Mezquital Valley in Mexiko. dissertation thesis, Albert-Ludwigs-University, Freiburg im Breisgau.

Broszat, M., Nacke, H., Blasi, R., Siebe, C., Hübner, J., Daniel, R., et al. (2014). Amplicon sequencing and resistance gene pool of bacterial communities from wastewater-irrigation fields in the Mezquital Valley, Mexico. Appl. Environ. Microbiol. 80, 5282–5291. doi: 10.1128/AEM.01295-14 Chen, L., and Wen, Y. (2011).

The role of bacterial biofilm in persistent infections and control strategies. Int. J. Oral Sci. 3, 66–73. doi: 10.4248/IJOS11022 Chopra, I. (2007).

The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J. Antimicrob. Chemother. 59, 587–590. doi: 10.1093/jac/dkm006 Chopra, I., and Roberts, M. (2001).

Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260. doi:

1128/MMBR.65.2.232-260.2001 Chow, J. W.(2000). Aminoglycoside resistance in enterococci. Clin. Infect. Dis. 31, 586–589. doi: 10.1086/313949 Chow, J. W., Zervos, M. J., Lerner, S. A., Thal, L. A., Donabedian, S. M., Jaworski, D. D., et al. (1997).

A novel gentamicin resistance gene in Enterococcus. Antimicrob. Agents Chemother. 41, 511–514. doi: 10.1128/AAC.41.3.511 Clauss-Lendzian, E., Vaishampayan, A., de Jong, A., Landau, U., Meyer, C., Kok. J, et al. (2018).

Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating. Microbiol. Res. 207, 53–64. doi: 10.1016/j.micres.2017.11.006

How to Cite
Deep Dey. (2019). Space Microbiology: Modern Research and Advantages for Human Colonization on Mars. International Journal for Research in Applied Sciences and Biotechnology, 6(4), 4-10.