A Review Article- Technology of Bioremediation

  • Saba Riad Khudhaier
  • Aqeel M. Ali Al-Lami
  • Rana Fadhil Abbas
Keywords: ferric iron (Fe 3), carbon dioxide (CO2), sulfates (SO4-2), nitrates (NO3-1), Bioremediation

Abstract

Bioremediation of contaminated retaw dna soil is consider  more cheap and least harmful way of removing xenobiotics in ecology, also Bioremediation, one of the most safe technology. Microorganisms which live everywhere can be considered as an option way out to solve the problem. Depending on the differences in the  nutritional capacity of microorganisms, it can used as bioremediation for degradation, eradication, immobilization, or detoxification and change contaminants  like heavy metal, hydrocarbons, oil, dye’s, pesticides...   

This study introduce a summarize to the progress in the technology of bioremediation and the techniques that used in its application (such as phytoremediation, Microorganism and animal remediation…) and the application of these techniques on water pollutants such as eutrophication, petroleum spills, pesticide, heavy metals). The environmental relations between pollutants and microorganisms will be discussed in this review; this study will focus also on major impact, the disadvantage and the advantage of the bioremediation methods and it affect on the contaminants, environment as well as the biology of livings especially its effect on the health of human.

Downloads

Download data is not yet available.

References

Tang, C. Y., Fu, Q. S., Criddle, C. S., & Leckie, J. O. (2007). Effect of Flux (Transmembrane Pressure) and Membrane Properties on Fouling and Rejection of Reverse Osmosis and Nanofiltration Membranes Treating Perfluorooctane Sulfonate Containing Wastewater. Environmental Science & Technology, 41(6), 2008–2014. https://doi.org/10.1021/es062052f

Strong, P. J., & Burgess, J. E. (2008). Treatment Methods for Wine-Related and Distillery Wastewaters: A Review. Bioremediation Journal, 12(2), 70–87. https://doi.org/10.1080/10889860802060063

Demnerová, K., Mackova, M., Spevákova, V., Beranova, K., Kochánková, L., Lovecká, P., Ryslavá, E., & Macek, T. (2005). Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations. International Microbiology: The Official Journal of the Spanish Society for Microbiology, 8(3), 205–211.

Macek, T., & Mackova, M. (2011). Potential of Biosorption Technology. In P. Kotrba, M. Mackova, & T. Macek (Eds.), Microbial Biosorption of Metals (pp. 7–17). Springer Netherlands. https://doi.org/10.1007/978-94-007-0443-5_2

Macek, T., Kotrba, P., Svatos, A., Novakova, M., Demnerova, K., & Mackova, M. (2008). Novel roles for genetically modified plants in environmental protection. Trends in Biotechnology, 26(3), 146–152. https://doi.org/10.1016/j.tibtech.2007.11.009

Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6(6), 441–454. https://doi.org/10.1038/nrmicro1892

Hrynkiewicz K, Baum C. (2014). Application of microorganisms in bioremediation of environment from heavy metals. In: Environmental Deterioration and Human Health. Springer 215-227.

Couto, N., Fritt-Rasmussen, J., Jensen, P. E., Højrup, M., Rodrigo, A. P., & Ribeiro, A. B. (2014). Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility. Environmental Science and Pollution Research, 21(9), 6221–6227. https://doi.org/10.1007/s11356-013-2466-3

Phulia V, Jamwal A, Saxena N, et al. (2013). Technologies in aquatic bioremediation. Kumar P, Zaki BMSA, Chauhan A, editors. Freshwater ecosystem and xenobiotics. Discovery Publishing House PVT. Ltd.: India. pp. 65-91.

Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource Technology, 102(3), 3366–3372. https://doi.org/10.1016/j.biortech.2010.11.071

Asira, E. E. (2013). Factors that Determine Bioremediation of Organic Compounds in the Soil. Academic Journal of Interdisciplinary Studies. https://doi.org/10.5901/ajis.2013.v2n13p125

Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37(18), 4311–4330. https://doi.org/10.1016/S0043-1354(03)00293-8

Neethu, C. S., Mujeeb Rahiman, K. M., Saramma, A. V., & Mohamed Hatha, A. A. (2015). Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic. Canadian Journal of Microbiology, 61(6), 429–435. https://doi.org/10.1139/cjm-2014-0803

Wang, Q., Zhang, S., Li, Y., & Klassen, W. (2011). Potential Approaches to Improving Biodegradation of Hydrocarbons for Bioremediation of Crude Oil Pollution. Journal of Environmental Protection, 02(01), 47–55. https://doi.org/10.4236/jep.2011.21005

Das, N., & Chandran, P. (2011). Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnology Research International, 2011, 1–13. https://doi.org/10.4061/2011/941810

Macaulay BM. (2015). Understanding the behaviour of oil-degrading micro-organisms to enhance the microbial remediation of spilled petroleum. Applied Ecology and Environmental Research, 13(1), 247-262. https://doi.org/10.15666/aeer/1301_247262

Yang, S.-Z., Jin, H.-J., Wei, Z., He, R.-X., Ji, Y.-J., Li, X.-M., & Yu, S.-P. (2009). Bioremediation of Oil Spills in Cold Environments: A Review. Pedosphere, 19(3), 371–381. https://doi.org/10.1016/S1002-0160(09)60128-4

Gallizia, I., McClean, S., & Banat, I. M. (2003). Bacterial biodegradation of phenol and 2,4-dichlorophenol. Journal of Chemical Technology & Biotechnology, 78(9), 959–963. https://doi.org/10.1002/jctb.890

Madhavi GN, Mohini DD. (2012). Review paper on – parameters affecting bioremediation. International Journal of Life Science and Pharma Research, 2(3), 77-80.

Kumar A, Bisht BS, Joshi VD, et al. (2011). Review on Bioremediation of Polluted Environment: A Management Tool. International Journal of Environmental Sciences, 1(6), 1079-1093.

Leung M. (2004). Bioremediation: techniques for cleaning up a mess. J. Biotechnol, 2, 18–22.

Mary Kensa V. (2011). Bioremediation - An overview. J. Ind. Pollut. Control, 27, 161–168.

Ubani, O., Atagana, I. H., & Thantsha, S. M. (2013). Biological degradation of oil sludge: A review of the current state of development. African Journal of Biotechnology, 12(47), 6544–6567. https://doi.org/10.5897/AJB11.1139

Yuniati, M. D. (2018, February). Bioremediation of petroleum-contaminated soil: A Review. In IOP Conference Series: Earth and Environmental Science (Vol. 118, No. 012063, pp. 1755-1315).

Garbisu C, Alkorta I. (2003). Basic concepts on heavy metal soil bioremediation. Eur. J Miner Process Environ Prot, 3, 58–66. Available at: http://www.ejmpep.com/garbisu_and_alkorta.pdf.

Perelo, L. W. (2010). Review: In situ and bioremediation of organic pollutants in aquatic sediments. Journal of Hazardous Materials, 177(1–3), 81–89. https://doi.org/10.1016/j.jhazmat.2009.12.090

Kulik, N., Goi, A., Trapido, M., & Tuhkanen, T. (2006). Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. Journal of Environmental Management, 78(4), 382–391. https://doi.org/10.1016/j.jenvman.2005.05.005

Xu, Y., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials, 183(1–3), 395–401. https://doi.org/10.1016/j.jhazmat.2010.07.038

Mosca Angelucci, D., & Tomei, M. C. (2016). Ex situ bioremediation of chlorophenol contaminated soil: Comparison of slurry and solid-phase bioreactors with the two-step polymer extraction-bioregeneration process: Ex situ soil remediation: comparative analysis of different solutions. Journal of Chemical Technology & Biotechnology, 91(6), 1577–1584. https://doi.org/10.1002/jctb.4882

Tomei, M. C., & Daugulis, A. J. (2013). Ex Situ Bioremediation of Contaminated Soils: An Overview of Conventional and Innovative Technologies. Critical Reviews in Environmental Science and Technology, 43(20), 2107–2139. https://doi.org/10.1080/10643389.2012.672056

Suja, F., Rahim, F., Taha, M. R., Hambali, N., Rizal Razali, M., Khalid, A., & Hamzah, A. (2014). Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. International Biodeterioration & Biodegradation, 90, 115–122. https://doi.org/10.1016/j.ibiod.2014.03.006

Pimmata, P., Reungsang, A., & Plangklang, P. (2013). Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation. International Biodeterioration & Biodegradation, 85, 196–204. https://doi.org/10.1016/j.ibiod.2013.07.009

Hamdi, H., Benzarti, S., Manusadžianas, L., Aoyama, I., & Jedidi, N. (2007). Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology and Biochemistry, 39(8), 1926–1935. https://doi.org/10.1016/j.soilbio.2007.02.008

Alisi, C., Musella, R., Tasso, F., Ubaldi, C., Manzo, S., Cremisini, C., & Sprocati, A. R. (2009). Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Science of The Total Environment, 407(8), 3024–3032. https://doi.org/10.1016/j.scitotenv.2009.01.011

Ueno, A., Ito, Y., Yumoto, I., & Okuyama, H. (2007). Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World Journal of Microbiology and Biotechnology, 23(12), 1739–1745. https://doi.org/10.1007/s11274-007-9423-6

Kauppi, S., Sinkkonen, A., & Romantschuk, M. (2011). Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: Comparison of biostimulation and bioaugmentation. International Biodeterioration & Biodegradation, 65(2), 359–368. https://doi.org/10.1016/j.ibiod.2010.10.011

Georgieva, S., Godjevargova, T., Mita, D. G., Diano, N., Menale, C., Nicolucci, C., Carratelli, C. R., Mita, L., & Golovinsky, E. (2010). Non-isothermal bioremediation of waters polluted by phenol and some of its derivatives by laccase covalently immobilized on polypropylene membranes. Journal of Molecular Catalysis B: Enzymatic, 66(1–2), 210–218. https://doi.org/10.1016/j.molcatb.2010.05.011

EPA. (2006). In situ and ex situ biodegradation technologies for remediation of contaminat-ed sites. Engineering issue, EPA/625/R-06/015. http://clu-in.org/download/contaminantfocus/dnapl/Treatment_Technologies/ epa_2006_engin_issue_bio.pdf.

Chen, J., Wei, X.-D., Liu, Y.-S., Ying, G.-G., Liu, S.-S., He, L.-Y., Su, H.-C., Hu, L.-X., Chen, F.-R., & Yang, Y.-Q. (2016). Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. Science of the Total Environment, 565, 240–248. https://doi.org/10.1016/j.scitotenv.2016.04.176

Venkata Mohan, S., Purushotham Reddy, B., & Sarma, P. N. (2009). Ex situ slurry phase bioremediation of chrysene contaminated soil with the function of metabolic function: Process evaluation by data enveloping analysis (DEA) and Taguchi design of experimental methodology (DOE). Bioresource Technology, 100(1), 164–172. https://doi.org/10.1016/j.biortech.2008.06.020

Prasanna, D., Venkata Mohan, S., Purushotham Reddy, B., & Sarma, P. N. (2008). Bioremediation of anthracene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode. Journal of Hazardous Materials, 153(1–2), 244–251. https://doi.org/10.1016/j.jhazmat.2007.08.063

Silva-Castro, G. A., Uad, I., Rodríguez-Calvo, A., González-López, J., & Calvo, C. (2015). Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environmental Research, 137, 49–58. https://doi.org/10.1016/j.envres.2014.11.009

Paudyn, K., Rutter, A., Kerry Rowe, R., & Poland, J. S. (2008). Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Regions Science and Technology, 53(1), 102–114. https://doi.org/10.1016/j.coldregions.2007.07.006

Maila, M. P., & Cloete, T. E. (2004). Bioremediation of petroleum hydrocarbons through landfarming: Are simplicity and cost-effectiveness the only advantages? Reviews in Environmental Science and Bio/Technology, 3(4), 349–360. https://doi.org/10.1007/s11157-004-6653-z

Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2015). Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environmental Monitoring and Assessment, 187(1), 4116. https://doi.org/10.1007/s10661-014-4116-8

Sharma S. (2012). Bioremediation: Features, Strategies and applications. Asian Journal of Pharmacy and Life Science, 2(2), 202-213.

Dell’Anno, A., Beolchini, F., Rocchetti, L., Luna, G. M., & Danovaro, R. (2012). High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments. Environmental Pollution, 167, 85–92. https://doi.org/10.1016/j.envpol.2012.03.043

Published
2020-10-22
How to Cite
Saba Riad Khudhaier, Aqeel M. Ali Al-Lami, & Rana Fadhil Abbas. (2020). A Review Article- Technology of Bioremediation. International Journal for Research in Applied Sciences and Biotechnology, 7(5), 349-353. https://doi.org/10.31033/ijrasb.7.5.46