The Effect of Natural and Petroleum Based Materials on the Growth Rate and Antibiotic Sensitivity of Pseudomonas aeruginosa

  • Esam Bashir Yahya USM
  • Muhanad Abdullah Abdulsamad
  • Abdulmutalib Alabeed Allaq
  • Takwa Abdoallah
  • Ebtehal Ermese
Keywords: mutagenic, exposure, bacteria, antibiotic resistance, growth rate


Most of bacteria spend their entire lives buffeted by changing environmental conditions, depending on the surrounding circumstances, to adapt and survive these changeable conditions. Bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. In this study, caffeine, nicotine, and petroleum based materials were used as stress factors to Pseudomonas aeruginosa, to evaluate their potential ability to induce growth rate and antibiotic resistance mutations. Bacterial cells exposed to diesel showed significant increase in growth rate, compared to the cells that exposed to the other materials. The exposure to high concentration of caffeine surprisingly tern the bacteria to become fully resistant to all tested antibiotics. Our data suggest the ability of our daily used materials to induce growth rate and antibiotic resistance mutations.


Download data is not yet available.


Frimodt-Møller, J., Rossi, E., Haagensen, J. A. J., Falcone, M., Molin, S., & Johansen, H. K. (2018). Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic-treated hosts. Scientific Reports, 8(1), 12512.

Watford, S., & Warrington, S. J. (2020). Bacterial DNA Mutations. In StatPearls. StatPearls Publishing.

Bukhari, N., Joseph, J. P., Hussain, S. S., Khan, M. A., Wakim, M. J. Y., Yahya, E. B., Arif, A., Saleem, A., & Sharif, N. (2019). Prevalence of Human Papilloma Virus Sub Genotypes following Head and Neck Squamous Cell Carcinomas in Asian Continent, A Systematic Review Article. Asian Pacific Journal of Cancer Prevention, 20(11), 3269–3277.

Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Completing bacterial genome assemblies with multiplex MinION sequencing. Microbial Genomics, 3(10).

Sikora, A., Janion, C., & Grzesiuk, E. (2012). Bacterial Systems for Testing Spontaneous and Induced Mutations. In R. Mishra (Ed.), Mutagenesis. InTech. pp. 153-178.

Han, J., Xia, Y., Lin, L., Zhang, Z., Tian, H., & Li, K. (2018). Next-generation Metabolomics in the Development of New Antidepressants: Using Albiflorin as an Example. Current Pharmaceutical Design, 24(22), 2530–2540.

Abdul Khalil, H. P. S., Adnan, A. S., Yahya, E. B., Olaiya, N. G., Safrida, S., Hossain, Md. S., Balakrishnan, V., Gopakumar, D. A., Abdullah, C. K., Oyekanmi, A. A., & Pasquini, D. (2020). A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 12(8), 1759.

Yahya EB, Alhawari SM, Abu Aeshah KA, Ali RH and Saada AO. (2018). Evaluation of in-vitroantibacterial activity of aqueous and alcoholic extracts of the peels punica granatum and olea europaea leaves. J. Sci. Technol. (Med. Sci.), 2(1), 36–44. Available at:

Gruber, J. D., Chen, W., Parnham, S., Beauchesne, K., Moeller, P., Flume, P. A., & Zhang, Y.-M. (2016). The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity. PeerJ, 4, e1495.

Yahya, E. B., Alfallous, K. A., Wali, A., Hameid, S., & Zwaid, H. (2020). Growth Rate and Antibiotic Sensitivity Effect of Some Natural and Petroleum Based Materials on Staphylococcus aureus. Int. J. Res. Appl. Sci. Biotechnol., 7(5), 7–11.

Wuthiekanun, V., White, N. J., Amornchai, P., Day, N. P. J., & Limmathurotsakul, D. (2016). Quality controls for antimicrobial disk diffusion testing on Leptospira Vanaporn Wuthiekanun agar. Transactions of The Royal Society of Tropical Medicine and Hygiene, trstmh;trw076v1.

Gielnik, A., Pechaud, Y., Huguenot, D., Cébron, A., Esposito, G., & van Hullebusch, E. D. (2019). Bacterial seeding potential of digestate in bioremediation of diesel contaminated soil. International Biodeterioration & Biodegradation, 143, 104715.

Snyder, R., Witz, G., & Goldstein, B. D. (1993). The toxicology of benzene. Environmental Health Perspectives, 100, 293–306.

Spycher, B. D., Lupatsch, J. E., Huss, A., Rischewski, J., Schindera, C., Spoerri, A., Vermeulen, R., & Kuehni, C. E. (2017). Parental occupational exposure to benzene and the risk of childhood cancer: A census-based cohort study. Environment International, 108, 84–91.

Yahya, E. B., Jummaat, F., Amirul, A. A., Adnan, A. S., Olaiya, N. G., Abdullah, C. K., Rizal, S., Mohamad Haafiz, M. K., & Khalil, H. P. S. A. (2020). A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics, 9(10), 648.

Liu, M., Jin, J., Pan, H., Feng, J., Cerniglia, C. E., Yang, M., & Chen, H. (2016). Effect of smokeless tobacco products on human oral bacteria growth and viability. Anaerobe, 42, 152–161.

Saxena, A., Pravin, V., & Suneetha, V. (2018). Effect of Caffeine extracted from Coffee on the Growth of Bacteria Isolated from Vellore. Research Journal of Pharmacy and Technology, 11(10), 4411.

How to Cite
Esam Bashir Yahya, Muhanad Abdullah Abdulsamad, Abdulmutalib Alabeed Allaq, Takwa Abdoallah, & Ebtehal Ermese. (2020). The Effect of Natural and Petroleum Based Materials on the Growth Rate and Antibiotic Sensitivity of Pseudomonas aeruginosa. International Journal for Research in Applied Sciences and Biotechnology, 7(5), 295-298.