Characterization of Chromosomal Abnormalities in Acute Myeloid Leukaemia Patients at the University Teaching Hospital, Lusaka, Zambia

  • Kachinda Wezi
  • Trevor Kaile
  • Peter Julius
  • Chirwa Emmanuel
  • Chifumbe Chintu
  • Sumbukeni Kowa
Keywords: Acute myeloid leukaemia, Chromosomal Abnormalities

Abstract

Introduction: Acute myeloid leukaemia (AML) is a highly malignant clonal   hematopoietic   disease   caused by both inherited and acquired genetic alterations (Song et al, 1999).  Current AML classification and prognostic systems incorporate genetic information but are limited to known abnormalities that have previously been identified with the use of cytogenetics, array comparative genomic hybridization (CGH), gene-expression profiling, and the resequencing of candidate genes. At diagnosis, most patients with AML harbour at least 1 chromosome aberration in their marrow blasts. Numerous recurrent structural and numeric cytogenetic aberrations have been identified and many of them not only are diagnostic markers for specific AML subtypes but also constitute independent prognostic factors for attainment of complete remission (CR), relapse risk, and overall survival (OS) (Mro´zeket al, 2007). With the targeted cytogenetic therapy, 30% of the patients achieve long-term cure. At University Teaching Hospital(UTH) however, the current diagnostic approach of acute leukaemia involves mainly cytomorphology and occasional flow cytometry. The cytomorphological blast characterization is not enough to provide a critical   determination of prognosis and developing a treatment plan.   Most of the AML patients at the UTH die within few months after diagnosis despite being put on chemotherapy. Cytogenetic analysis is not done despite the cytogenetic abnormalities being the   major predictors of favourable, intermediate or adverse prognosis.

Aim: To characterize acute myeloid leukaemia (AML) according to WHO 2008 revised classification in patients at the University Teaching Hospital.

Design and Methods: This was a descriptive cross-sectional study conducted to characterize acute myeloid leukaemia (AML) according to WHO 2008 revised classification in patients at the UTH. Patients with AML were simultaneously analyzed for the presence of 4 genetic abnormalities, PML/RARα for t(15;17), AML1/ETO for t(8;21), CBFβ/MYH11 for inv(16)/t(16;16) and rearrangements of the MLL gene for 11q23 abnormalities. AML was classified using the new World Health Organization (WHO) classification for haematologic malignancies. The techniques used were standardized according to the recommendations of the European BIOMED-1 Concerted Action.

Results: The overall frequency of leukemia displaying one of the four recurrent cytogenetic translocations were 13 cases (46.5%) of which PML/RARα transcript was present in six(6) patients (21.4%) (3 were bcr1, 1 bcr2 and 2 bcr3). The AML1/ETO fusion transcript was detected in only one(1) case (3.6%) with M2 morphology, but other cases with M2 morphology were negative. CBFβ/MYH11 transcript was present in 2 cases (7.1%) and some of them displaying M4Eo morphology. Finally, 4 cases (14.3%) showed rearrangements of the MLL gene. By contrast, the frequency of AML not otherwise characterized which was 15 cases (53.6%) increased with age (13% for 6-35years age group, 20% for 36-65years age group and 67% for above 66years age group). Our results differ from those reported from the United States and North/Central Europe, particularly regarding the incidence of t(15;17) and t(8;21) translocations. In Zambia the frequency of t(15;17) is higher while that of t(8;21) is lower. This supports the view that geographic variations in tumor-associated aberrations in hematologic malignancies exist.

Conclusions: Our study showed that chromosomal alteration PML/RAR t(15,17) which was 21.4% ,was the commonest, whereas AML1/ETO t(8,21) which was 3.6%,was the least common among patients presenting at UTH, Lusaka, Zambia. Our study showed that chromosomal aberration detected in our patients make them less responsive to cytotoxic drugs. The use of molecular technique at point of diagnosis would assist in identifying AML with better prognosis by administering appropriate treatment. The results support the existence of chromosomal abnormalities of AML in our Zambian patients. Awareness of these chromosomal abnormalities and morphology could contribute to the design of cost-effective screening strategies, adapted by our National Health systems according to the prevalence of locally detected genetic aberrations. Acquired genetic alterations such as balanced and unbalanced chromosome aberrations and submicroscopic gene mutations and changes in gene expression strongly affect pre-treatment features and prognosis of patients with acute myeloid leukemia (AML).

Downloads

Download data is not yet available.

References

Fleming, A., Terunuma, H., Tembo, C., & Mantini, H. (1999). Leukaemias in Zambia. Leukemia, 13(8), 1292–1293. https://doi.org/10.1038/sj.leu.2401473

Kazem, A. H., Mikhael, I. L., & Ghanem, A. M. (2011). Cytoplasmic nucleophosmin (cNPM) in acute myeloid leukaemia: Relation to disease characteristics. Alexandria Journal of Medicine, 47(3), 225–235. https://doi.org/10.1016/j.ajme.2011.07.015

Byrd, J. C. (2002). Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: Results from Cancer and Leukemia Group B (CALGB 8461). Blood, 100(13), 4325–4336. https://doi.org/10.1182/blood-2002-03-0772

Bullinger, L., Döhner, K., Bair, E., Fröhling, S., Schlenk, R. F., Tibshirani, R., Döhner, H., & Pollack, J. R. (2004). Use of Gene-Expression Profiling to Identify Prognostic Subclasses in Adult Acute Myeloid Leukemia. New England Journal of Medicine, 350(16), 1605–1616. https://doi.org/10.1056/NEJMoa031046

Dell, R. B., Holleran, S., & Ramakrishnan, R. (2002). Sample Size Determination. ILAR Journal, 43(4), 207–213. https://doi.org/10.1093/ilar.43.4.207

Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., Chen, K., Koboldt, D. C., Fulton, R. S., Delehaunty, K. D., McGrath, S. D., Fulton, L. A., Locke, D. P., Magrini, V. J., Abbott, R. M., Vickery, T. L., Reed, J. S., Robinson, J. S., Wylie, T., Smith, S. M., … Ley, T. J. (2009). Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome. New England Journal of Medicine, 361(11), 1058–1066. https://doi.org/10.1056/NEJMoa0903840

Gilliland, D. G., Jordan, C. T., & Felix, C. A. (2004). The Molecular Basis of Leukemia. Hematology, 2004(1), 80–97. https://doi.org/10.1182/asheducation-2004.1.80

Gilliland, D. G., Jordan, C. T., & Felix, C. A. (2004). The Molecular Basis of Leukemia. Hematology, 2004(1), 80–97. https://doi.org/10.1182/asheducation-2004.1.80

Döhner, H., Estey, E. H., Amadori, S., Appelbaum, F. R., Büchner, T., Burnett, A. K., Dombret, H., Fenaux, P., Grimwade, D., Larson, R. A., Lo-Coco, F., Naoe, T., Niederwieser, D., Ossenkoppele, G. J., Sanz, M. A., Sierra, J., Tallman, M. S., Löwenberg, B., & Bloomfield, C. D. (2010). Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood, 115(3), 453–474. https://doi.org/10.1182/blood-2009-07-235358

Jaffe E, Harris N, Stein H, Vardiman J. (2001). Pathology and genetics of tumours of hematopoietic and lymphoid tissues. Lyon, France: IARC Press. Available at: https://screening.iarc.fr/doc/BB9.pdf

Vardiman, J. W., Thiele, J., Arber, D. A., Brunning, R. D., Borowitz, M. J., Porwit, A., Harris, N. L., Le Beau, M. M., Hellström-Lindberg, E., Tefferi, A., & Bloomfield, C. D. (2009). The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood, 114(5), 937–951. https://doi.org/10.1182/blood-2009-03-209262

Kelly, L. M., & Gilliland, D. G. (2002). G ENETICS OF M YELOID L EUKEMIAS. Annual Review of Genomics and Human Genetics, 3(1), 179–198. https://doi.org/10.1146/annurev.genom.3.032802.115046

Mrózek, K., Marcucci, G., Paschka, P., Whitman, S. P., & Bloomfield, C. D. (2007). Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: Are we ready for a prognostically prioritized molecular classification? Blood, 109(2), 431–448. https://doi.org/10.1182/blood-2006-06-001149

Song, W.-J., Sullivan, M. G., Legare, R. D., Hutchings, S., Tan, X., Kufrin, D., Ratajczak, J., Resende, I. C., Haworth, C., Hock, R., Loh, M., Felix, C., Roy, D.-C., Busque, L., Kurnit, D., Willman, C., Gewirtz, A. M., Speck, N. A., Bushweller, J. H., … Gilliland, D. G. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nature Genetics, 23(2), 166–175. https://doi.org/10.1038/13793

Valk, P. J. M., Verhaak, R. G. W., Beijen, M. A., Erpelinck, C. A. J., van Doorn-Khosrovani, S. B. van W., Boer, J. M., Beverloo, H. B., Moorhouse, M. J., van der Spek, P. J., Löwenberg, B., & Delwel, R. (2004). Prognostically Useful Gene-Expression Profiles in Acute Myeloid Leukemia. New England Journal of Medicine, 350(16), 1617–1628. https://doi.org/10.1056/NEJMoa040465

Rowley J. D. (1990). Recurring chromosome abnormalities in leukemia and lymphoma. Seminars in hematology, 27(2), 122–136.

Harris, N. L., Jaffe, E. S., Diebold, J., Flandrin, G., Muller-Hermelink, H. K., Vardiman, J., Lister, T. A., & Bloomfield, C. D. (1999). World Health Organization Classification of Neoplastic Diseases of the Hematopoietic and Lymphoid Tissues: Report of the Clinical Advisory Committee Meeting—Airlie House, Virginia, November 1997. Journal of Clinical Oncology, 17(12), 3835–3849. https://doi.org/10.1200/JCO.1999.17.12.3835

Tallman, M. S., Andersen, J. W., Schiffer, C. A., Appelbaum, F. R., Feusner, J. H., Ogden, A., Shepherd, L., Willman, C., Bloomfield, C. D., Rowe, J. M., & Wiernik, P. H. (1997). All- trans -Retinoic Acid in Acute Promyelocytic Leukemia. New England Journal of Medicine, 337(15), 1021–1028. https://doi.org/10.1056/NEJM199710093371501

Coco, F. L., Nervi, C., Avvisati, G., & Mandelli, F. (1998). Acute promyelocytic leukemia: A curable disease. Leukemia, 12(12), 1866–1880. https://doi.org/10.1038/sj.leu.2401230

Sanz, M. A., Martín, G., Rayón, C., Esteve, J., González, M., Díaz-Mediavilla, J., Bolufer, P., Barragán, E., Terol, M. J., González, J. D., Colomer, D., Chillón, C., Rivas, C., Gómez, T., Ribera, J. M., Bornstein, R., Román, J., Calasanz, M. J., Arias, J., Alvarez, C., … Debén, G. (1999). A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARalpha-positive acute promyelocytic leukemia. PETHEMA group. Blood, 94(9), 3015–3021.

Mrózek, K., Heinonen, K., de la Chapelle, A., & Bloomfield, C. D. (1997). Clinical significance of cytogenetics in acute myeloid leukemia. Seminars in oncology, 24(1), 17–31.

Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., Rees, J., Hann, I., Stevens, R., Burnett, A., & Goldstone, A. (1998). The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, 92(7), 2322–2333.

Dastugue, N., Payen, C., Lafage-Pochitaloff, M., Bernard, P., Leroux, D., Huguet-Rigal, F., Stoppa, A. M., Marit, G., Molina, L., & Michallet, M. (1995). Prognostic significance of karyotype in de novo adult acute myeloid leukemia. The BGMT group. Leukemia, 9(9), 1491–1498.

van Dongen, J., Macintyre, E., Gabert, J., Delabesse, E., Rossi, V., Saglio, G., Gottardi, E., Rambaldi, A., Dotti, G., Griesinger, F., Parreira, A., Gameiro, P., Diáz, M. G., Malec, M., Langerak, A., San Miguel, J., & Biondi, A. (1999). Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease: Report of the BIOMED-1 Concerted Action: Investigation of minimal residual disease in acute leukemia. Leukemia, 13(12), 1901–1928. https://doi.org/10.1038/sj.leu.2401592

Langabeer, S. E., Walker, H., Gale, R. E., Wheatley, K., Burnett, A. K., Goldstone, A. H., & Linch, D. C. (1997). Frequency of CBFβ/MYH11 fusion transcripts in patients entered into the U.K. MRC AML trials. British Journal of Haematology, 96(4), 736–739. https://doi.org/10.1046/j.1365-2141.1997.d01-2096.x

Langabeer, S. E., Walker, H., Rogers, J. R., Burnett, A. K., Wheatley, K., Swirsky, D., Goldstone, A. H., Linch, D. C., & on behalf of the MRC Adult Leukaemia Working Party. (1997). Incidence of AML1/ETO fusion transcripts in patients entered into the MRC AML trials. British Journal of Haematology, 99(4), 925–928. https://doi.org/10.1046/j.1365-2141.1997.4663270.x

Jing, Y. (2004). The PML-RARα Fusion Protein and Targeted Therapy for Acute Promyelocytic Leukemia. Leukemia & Lymphoma, 45(4), 639–648. https://doi.org/10.1080/10428190310001609933

Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., Rees, J., Hann, I., Stevens, R., Burnett, A., & Goldstone, A. (1998). The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, 92(7), 2322–2333.

Kumar, C. C. (2011). Genetic Abnormalities and Challenges in the Treatment of Acute Myeloid Leukemia. Genes & Cancer, 2(2), 95–107. https://doi.org/10.1177/1947601911408076

Jing, Y. (2004). The PML-RARα Fusion Protein and Targeted Therapy for Acute Promyelocytic Leukemia. Leukemia & Lymphoma, 45(4), 639–648. https://doi.org/10.1080/10428190310001609933

Grimwade, D., Biondi, A., Mozziconacci, M. J., Hagemeijer, A., Berger, R., Neat, M., Howe, K., Dastugue, N., Jansen, J., Radford-Weiss, I., Lo Coco, F., Lessard, M., Hernandez, J. M., Delabesse, E., Head, D., Liso, V., Sainty, D., Flandrin, G., Solomon, E., Birg, F., … Lafage-Pochitaloff, M. (2000). Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Français de Cytogénétique Hématologique, Groupe de Français d'Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action "Molecular Cytogenetic Diagnosis in Haematological Malignancies". Blood, 96(4), 1297–1308.

Hernández, J. M., Martín, G., Gutiérrez, N. C., Cervera, J., Ferro, M. T., Calasanz, M. J., Martínez-Climent, J. A., Luño, E., Tormo, M., Rayón, C., Díaz-Mediavilla, J., González, M., González-San Miguel, J. D., Pérez-Equiza, K., Rivas, C., Esteve, J., Alvarez, M., Odriozola, J., Ribera, J. M., Sanz, M. A., … PETHA Cooperative Group, Spain (2001). Additional cytogenetic changes do not influence the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with an ATRA plus anthracyclin based protocol. A report of the Spanish group PETHEMA. Haematologica, 86(8), 807–813.

Sanz, M. A., Tallman, M. S., & Lo-Coco, F. (2005). Tricks of the trade for the appropriate management of newly diagnosed acute promyelocytic leukemia. Blood, 105(8), 3019–3025. https://doi.org/10.1182/blood-2004-09-3475

Lo-Coco, F., & Ammatuna, E. (2006). The Biology of Acute Promyelocytic Leukemia and Its Impact on Diagnosis and Treatment. Hematology, 2006(1), 156–161. https://doi.org/10.1182/asheducation-2006.1.156

Frankfurt, O., & Tallman, M. S. (2006). Strategies for the Treatment of Acute Promyelocytic Leukemia. Journal of the National Comprehensive Cancer Network, 4(1), 37–50. https://doi.org/10.6004/jnccn.2006.0005

Lo Coco, F., Ammatuna, E., & Noguera, N. (2006). Treatment of acute promyelocytic leukemia with gemtuzumab ozogamicin. Clinical advances in hematology & oncology : H&O, 4(1), 57–77.

Aribi, A., Kantarjian, H. M., Estey, E. H., Koller, C. A., Thomas, D. A., Kornblau, S. M., Faderl, S. H., Laddie, N. M., Garcia-Manero, G., & Cortes, J. E. (2007). Combination therapy with arsenic trioxide, all-trans retinoic acid, and gemtuzumab ozogamicin in recurrent acute promyelocytic leukemia. Cancer, 109(7), 1355–1359. https://doi.org/10.1002/cncr.22524

Rowley J. D. (1973). Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Annales de genetique, 16(2), 109–112.

Mrózek, K., Prior, T. W., Edwards, C., Marcucci, G., Carroll, A. J., Snyder, P. J., Koduru, P. R. K., Theil, K. S., Pettenati, M. J., Archer, K. J., Caligiuri, M. A., Vardiman, J. W., Kolitz, J. E., Larson, R. A., & Bloomfield, C. D. (2001). Comparison of Cytogenetic and Molecular Genetic Detection of t(8;21) and inv(16) in a Prospective Series of Adults With De Novo Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 19(9), 2482–2492. https://doi.org/10.1200/JCO.2001.19.9.2482

Erickson, P., Gao, J., Chang, K. S., Look, T., Whisenant, E., Raimondi, S., Lasher, R., Trujillo, J., Rowley, J., & Drabkin, H. (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood, 80(7), 1825–1831.

Miyoshi, H., Kozu, T., Shimizu, K., Enomoto, K., Maseki, N., Kaneko, Y., Kamada, N., & Ohki, M. (1993). The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. The EMBO journal, 12(7), 2715–2721.

Bitter, M. A., Le Beau, M. M., Rowley, J. D., Larson, R. A., Golomb, H. M., & Vardiman, J. W. (1987). Associations between morphology, karyotype, and clinical features in myeloid leukemias. Human Pathology, 18(3), 211–225. https://doi.org/10.1016/S0046-8177(87)80002-3

Nakamura, H., Kuriyama, K., Sadamori, N., Mine, M., Itoyama, T., Sasagawa, I., Matsumoto, K., Tsuji, Y., Asou, N., Kageyama, S.-I., Sakamaki, H., Emi, N., Ohno, R., & Tomonaga, M. (1997). Morphological subtyping of acute myeloid leukemia with maturation (AML-M2): Homogeneous pink-colored cytoplasm of mature neutrophils is most characteristic of AML-M2 with t(8;21). Leukemia, 11(5), 651–655. https://doi.org/10.1038/sj.leu.2400618

Marcucci, G., Mrózek, K., Ruppert, A. S., Maharry, K., Kolitz, J. E., Moore, J. O., Mayer, R. J., Pettenati, M. J., Powell, B. L., Edwards, C. G., Sterling, L. J., Vardiman, J. W., Schiffer, C. A., Carroll, A. J., Larson, R. A., & Bloomfield, C. D. (2005). Prognostic Factors and Outcome of Core Binding Factor Acute Myeloid Leukemia Patients With t(8;21) Differ From Those of Patients With inv(16): A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 23(24), 5705–5717. https://doi.org/10.1200/JCO.2005.15.610

Appelbaum, F. R., Kopecky, K. J., Tallman, M. S., Slovak, M. L., Gundacker, H. M., Kim, H. T., Dewald, G. W., Kantarjian, H. M., Pierce, S. R., & Estey, E. H. (2006). The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. British Journal of Haematology, 135(2), 165–173. https://doi.org/10.1111/j.1365-2141.2006.06276.x

Schlenk, R. F., Benner, A., Krauter, J., Büchner, T., Sauerland, C., Ehninger, G., Schaich, M., Mohr, B., Niederwieser, D., Krahl, R., Pasold, R., Döhner, K., Ganser, A., Döhner, H., & Heil, G. (2004). Individual Patient Data–Based Meta-Analysis of Patients Aged 16 to 60 Years With Core Binding Factor Acute Myeloid Leukemia: A Survey of the German Acute Myeloid Leukemia Intergroup. Journal of Clinical Oncology, 22(18), 3741–3750. https://doi.org/10.1200/JCO.2004.03.012

Published
2020-10-01
How to Cite
Kachinda Wezi, Trevor Kaile, Peter Julius, Chirwa Emmanuel, Chifumbe Chintu, & Sumbukeni Kowa. (2020). Characterization of Chromosomal Abnormalities in Acute Myeloid Leukaemia Patients at the University Teaching Hospital, Lusaka, Zambia. International Journal for Research in Applied Sciences and Biotechnology, 7(5), 234-243. https://doi.org/10.31033/ijrasb.7.5.30