Precipitation and Separation Cations from Binary Aqueous Systems using Waste Sludge from the Solway Process

  • Halid Junuzović
  • Amra Selimović
  • Sabina Begić
  • Mirsad Salkić
  • Ramzija Cvrk
  • Melisa Ahmetović
Keywords: Heavy Metals, Precipitation, Waste Sludge, Solway Process

Abstract

In addition to soda, the Solway production process yields large amounts of waste sludge that contains a high percentage of CaCO3 and Ca(OH)2. In this paper, solid waste sludge from a soda factory in Bosnia and Herzegovina of a certain granulation was used to remove metal ions from the binary system initial concentrations of 500 mg/L. The research results showed that the precipitation efficiency for the binary system Cu - Ni was 99.810% at a pH of 11.42 for Cu2+ and 99.896% for Ni2+ at a pH of 10.86, while for the binary system Pb - Zn it was 99.84% at the same pH value of 10.64. This research has shown that it is very difficult to separate and remove metal precipitation from binary systems because the optimal pH for one metal does not correspond to another metal. 

Downloads

Download data is not yet available.

References

Yahya A.N., Khalil M. S. & Ghorab M. A. (2018). Environmental Pollution by Heavy Metals in the Aquatic Ecosystems of Egypt. Open Access Journal of Toxicology. 3(1). 001-009. https://doi.org/10.19080/OAJT.2018.03.555603

Hussein, H. K., Abu-Zinadah, O. A., EL-Rabey, H. A., & Meerasahib, M. F. (2013). Estimation of some heavy metals in polluted well water and mercury accumulation in broiler organs. Brazilian Archives of Biology and Technology, 56(5), 767–776. https://doi.org/10.1590/S1516-89132013000500007

Elghobashy, H., Zaghloul, K., & Metwally, M. (2001). Effect of some water pollutants on the nile tilapia, oreochromisniloticus collected from the river nile and some egyptian lakes. Egyptian Journal of Aquatic Biology and Fisheries, 5(4), 251–279. https://doi.org/10.21608/ejabf.2001.1720

Madha S.,Ahamad A., Amit K. S., Jyoti K., Joginder S. C., Sanjeev S., Pardeep S. (2020). Water Pollutants: Sources and Impact on the Environment and Human Health. Chapter in: Sensors in Water Pollutants Monitoring: Role of Material. Springer Nature Singapore Pte Ltd. pp. 43-62. https://doi.org/10.1007/978-981-15-0671-0

Jayanta K. S., Rajendiran S., M. Vassanda C., Dotaniya M. L. Samaresh K., Ashok K. P. (2017). Major Inorganic Pollutants Affecting Soil and Crop Quality. Chapter in: Soil Pollution - An Emerging Threat to Agriculture. Springer, Singapore. pp. 75-104.

Förstner, U., & Müller, G. (1973). Heavy metal accumulation in river sediments: A response to environmental pollution. Geoforum, 4(2), 53–61. https://doi.org/10.1016/0016-7185(73)90006-7

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019, 1–14. https://doi.org/10.1155/2019/6730305

Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. S. M. (2019). Integrated Remediation Processes Toward Heavy Metal Removal/Recovery From Various Environments-A Review. Frontiers in Environmental Science, 7, 66. https://doi.org/10.3389/fenvs.2019.00066

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment. In A. Luch (Ed.), Molecular, Clinical and Environmental Toxicology (Vol. 101, pp. 133–164). Springer Basel. https://doi.org/10.1007/978-3-7643-8340-4_6

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009

Renu, N. A., Agarwal, M., & Singh, K. (2017). Methodologies for removal of heavy metal ions from wastewater: An overview. Interdisciplinary Environmental Review, 18(2), 124. https://doi.org/10.1504/IER.2017.087915

Peters, R. W., Ku, Y., & Bhattacharyya, D. (1985). Evaluation of Recent Treatment Techniques for Removal of Heavy Metals from Industrial Wastewater. ALCHE Symposium Series, 81 (243), 165-203.

Steven L. C. (2007). Methods for removing heavy metals from water using chemical precipitation and field separation methods. United States Patent. Available at: https://patents.google.com/patent/US7255793B2/en.

Yaser D. (2017). Nanotechnology and Functional Materials for Engineers. Chapter: Nanopolymers. pp.121-144.

a] Ain Zainuddin, N., Azwan Raja Mamat, T., Imam Maarof, H., Wahidah Puasa, S., & Rohana Mohd Yatim, S. (2019). Removal of Nickel, Zinc and Copper from Plating Process Industrial Raw Effluent Via Hydroxide Precipitation Versus Sulphide Precipitation. IOP Conference Series: Materials Science and Engineering, 551, 012122. https://doi.org/10.1088/1757-899X/551/1/012122

b] Ain Zainuddin, N., Azwan Raja Mamat, T., Imam Maarof, H., Wahidah Puasa, S., & Rohana Mohd Yatim, S. (2019). Removal of Nickel, Zinc and Copper from Plating Process Industrial Raw Effluent Via Hydroxide Precipitation Versus Sulphide Precipitation. IOP Conference Series: Materials Science and Engineering, 551, 012122. https://doi.org/10.1088/1757-899X/551/1/012122

Steinhauser, G. (2008). Cleaner production in the Solvay Process: General strategies and recent developments. Journal of Cleaner Production, 16(7), 833–841. https://doi.org/10.1016/j.jclepro.2007.04.005

Shatov A.A., Dryamina M.A., Badertdinov R.N. (2004). Potential Utilizations of Soda Production Wastes. Chemistry for Sustainable Development. 12. 565-571. Available at: https://www.sibran.ru/upload/iblock/525/52525fa2889a178ce26f3a50ec3c3b83.pdf

De Carvalho Pinto, P. C., de Oliveira Carvalho, M. M., Linhares, F. M., da Silva, T. R., & de Lima, G. M. (2015). A cleaner production of sodium hydrogen carbonate: Partial replacement of lime by steel slag milk in the ammonia recovery step of the Solvay process. Clean Technologies and Environmental Policy, 17(8), 2311–2321. https://doi.org/10.1007/s10098-015-0973-2

Amra S., Halid J., Sabina B., Abdel Đ., Mirsad S., Melisa A. (2020). Investigation of Solvay Process Waste Sludge Potential for Precipitation of Heavy Metals from Aqueous Solutions. International Journal of Basic & Applied Sciences, 20 (01), 7-11. Available at: http://ijens.org/Vol_20_I_01/203401-7878-IJBAS-IJENS.pdf

Sdiri, A., & Higashi, T. (2013). Simultaneous removal of heavy metals from aqueous solution by natural limestones. Applied Water Science, 3(1), 29–39. https://doi.org/10.1007/s13201-012-0054-1

Published
2020-10-01
How to Cite
Halid Junuzović, Amra Selimović, Sabina Begić, Mirsad Salkić, Ramzija Cvrk, & Melisa Ahmetović. (2020). Precipitation and Separation Cations from Binary Aqueous Systems using Waste Sludge from the Solway Process. International Journal for Research in Applied Sciences and Biotechnology, 7(5), 229-233. https://doi.org/10.31033/ijrasb.7.5.29

Most read articles by the same author(s)