Review on: Growing a Glass of Rich Immune Booster at Your Home: Triticum aestivum L. (Wheat Grass) Beneficial Effect on Health in this Pandemic Scenario

  • Shalini Balakrishnan
Keywords: Triticum aestivum, Wheat grass, Apigenin, Quercitin, Luteoline


In this review article attention is put towards the common India medicinal plant, Wheat grass that has been put into use as a part of Ayurvedic medicine. Wheat grass juice is an effective healer because it contains all mineral known to man and vitamins A, B-Complex, C E and K. It is extremely rich in protein and contains 17 amino acids, the building blocks of protein. It contains enzymes that decomposes superoxide radicals in the body. Wheat grass seems to have positive effects on blood sugar levels. Wheat grass juice seems to increase strength and endure and renew health. Wheat grass juice consumption is seen both in urban and rural diet style. Thus, it is necessary to study and research the relevant medicinal effect of these active components found in young wheat grass on both normal and COVID effected patients to fight the diseases by enhancing the function of immune system to ward off infection and diseases.  



Download data is not yet available.


Renu Mogra and Preeti Rathi. (2013). Health benefits of wheat grass –a wonder food. International Journal of Food and Nutritional Sciences; 2(4), 10-13.

Thompson, L. U. (1994). Antioxidants and hormone‐mediated health benefits of whole grains. Critical Reviews in Food Science and Nutrition, 34(5–6), 473–497.

Jacobs, D. R., Andersen, L. F., & Blomhoff, R. (2007). Whole-grain consumption is associated with a reduced risk of noncardiovascular, noncancer death attributed to inflammatory diseases in the Iowa Women’s Health Study. The American Journal of Clinical Nutrition, 85(6), 1606–1614.

Meyer, K. A., Kushi, L. H., Jacobs, D. R., Slavin, J., Sellers, T. A., & Folsom, A. R. (2000). Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. The American Journal of Clinical Nutrition, 71(4), 921–930.

Nicodemus, K. K., Jacobs Jr, D. R., & Folsom, A. R. (2001). Whole and refined grain intake and risk of incident postmenopausal breast cancer (United States). Cancer Causes and Control, 12(10), 917–925.

Kulkarni, S. D., Tilak, Jai. C., Acharya, R., Rajurkar, N. S., Devasagayam, T. P. A., & Reddy, A. V. R. (2006). Evaluation of the antioxidant activity of wheatgrass (Triticum aestivum L.) as a function of growth under different conditions. Phytotherapy Research, 20(3), 218–227.

Singh, N., Verma, P., and Pandey, B. R. (2012), Therapeutic Potential of Organic Triticum aestivum Linn. (Wheat Grass) in Prevention and Treatment of Chronic Diseases: An Overview. International Journal of Pharmaceutical Sciences and Drug Research. 4(1), 10-14.

Maehle, L., Lystad, E., Eilertsen, E., Einarsdottír, E., Høstmark, A. T., & Haugen, A. (1999). Growth of human lung adenocarcinoma in nude mice is influenced by various types of dietary fat and vitamin E. Anticancer Res., 19(3A), 1649-1655.

Bar-Sela, G., Tsalic, M., Fried, G., & Goldberg, H. (2007). Wheat Grass Juice May Improve Hematological Toxicity Related to Chemotherapy in Breast Cancer Patients: A Pilot Study. Nutrition and Cancer, 58(1), 43–48.

Karadag, A., Ozkan, T., Altınok, B., Aydos, S., & Sunguroglu, A. (2007). Antiproliferative and apoptotic effects of wheatgrass (Triticum aestivum L.) extracts on chronic myeloid leukemia (CML) cell line. Planta Medica, 73(09), P_540.

Aydos, Sena & Avci, Aslihan & Ozkan, Tulin & Karadag, Aynur & Gürleyik, E. & Altınok, Buket & Sunguroǧlu, A.. (2011). Antiproliferative, apoptotic and antioxidant activities of wheatgrass (Triticum aestivum L.) extract on CML (K562) cell line. Turkish Journal of Medical Sciences. 41(4). 657-663. 10.3906/sag-0912-425.

K. Irak, H. Mert, I. H. Yoruk, I. D. Sogutlu, N. Mert. (2016). Determination of the level of some vitamin in wheatgrass and grass. J. Harmoniz. Res. Appl. Sci. 4(4), 145-150.

Hänninen, O., Rauma, A. L., Kaartinen, K., & Nenonen, M. (1999). Vegan diet in physiological health promotion. Acta physiologica Hungarica, 86(3-4), 171–180.

Lai, C., Dabney, B. J., & Shaw, C. R. (1978). Inhibition of in vitro metabolic activation of carcinogens by wheat sprout extracts. Nutrition and Cancer, 1(1), 27–30.

Lai, C. (1979). Chlorophyll: The active factor in wheat sprout extract inhibiting the metabolic activation of carcinogens in vitro. Nutrition and Cancer, 1(3), 19–21.

Aydos, Sena & Avci, Aslihan & Ozkan, Tulin & Karadag, Aynur & Gürleyik, E. & Altınok, Buket & Sunguroǧlu, A.. (2011). Antiproliferative, apoptotic and antioxidant activities of wheatgrass (Triticum aestivum L.) extract on CML (K562) cell line. Turkish Journal of Medical Sciences. 41(4). 657-663. 10.3906/sag-0912-425.

Falcioni, G., Fedeli, D., Tiano, L., Calzuola, I., Mancinelli, L., Marsili, V., & Gianfranceschi, G. (2002). Antioxidant Activity of Wheat Sprouts Extract In Vitro: Inhibition of DNA Oxidative Damage. Journal of Food Science, 67(8), 2918–2922.

Chang, R. (2002). Bioactive Polysaccharides from Traditional Chinese Medicine Herbs as Anticancer Adjuvants. The Journal of Alternative and Complementary Medicine, 8(5), 559–565.

Ramberg, J. E., Nelson, E. D., & Sinnott, R. A. (2010). Immunomodulatory dietary polysaccharides: A systematic review of the literature. Nutrition Journal, 9(1), 54.

Tsai, C.-C., Lin, C.-R., Tsai, H.-Y., Chen, C.-J., Li, W.-T., Yu, H.-M., Ke, Y.-Y., Hsieh, W.-Y., Chang, C.-Y., Wu, C.-Y., Chen, S.-T., & Wong, C.-H. (2013). The Immunologically Active Oligosaccharides Isolated from Wheatgrass Modulate Monocytes via Toll-like Receptor-2 Signaling. Journal of Biological Chemistry, 288(24), 17689–17697.

Spilde, L. A. (1989). Influence of Seed Size and Test Weight on Several Agronomic Traits of Barley and Hard Red Spring Wheat. Journal of Production Agriculture, 2(2), 169–172.

Mian, M. A. R., & Nafziger, E. D. (1994). Seed Size and Water Potential Effects on Germination and Seedling Growth of Winter Wheat. Crop Science, 34(1), 169–171.

M. Chauhan (2014). A pilot study on wheat grass juice for its phytochemical, nutritional and therapeutic potential on chronic diseases. International Journal of Chemical Studies, 2(4), 27-34.

Livingston. (1976). Abscisic acid tablets and process, United States Patent 3958025.

J Wheat, G Currie. (2007). Herbal medicine for cancer patients: An evidence based review. The Internet Journal of Alternative Medicine, 5(2), 1-11.

Tachino, N., Guo, D., Dashwood, W. M., Yamane, S., Larsen, R., & Dashwood, R. (1994). Mechanisms of the in vitro antimutagenic action of chlorophyllin against benzo[a]pyrene: Studies of enzyme inhibition, molecular complex formation and degradation of the ultimate carcinogen. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 308(2), 191–203.

Guengerich, F. P., Kim, D. H., & Iwasaki, M. (1991). Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chemical Research in Toxicology, 4(2), 168–179.

Chiu, L., C. M., Kong, C., K. L., & Ooi, V., E. C. (2005). The chlorophyllin-induced cell cycle arrest and apoptosis in human breast cancer MCF-7 cells is associated with ERK deactivation and Cyclin D1 depletion. International Journal of Molecular Medicine, 16(4), 735–740.

Ben-Arye, E., Goldin, E., Wengrower, D., Stamper, A., Kohn, R., & Berry, E. (2002). Wheat Grass Juice in the Treatment of Active Distal Ulcerative Colitis: A Randomized Double-blind Placebo-controlled Trial. Scandinavian Journal of Gastroenterology, 37(4), 444–449.

Bowers, W. F. (1947). Chlorophyll in wound healing and suppurative disease. The American Journal of Surgery, 73(1), 37–50.

Singh, N., Verma, P., & Pandey, B. R. (2012). Therapeutic potential of organic triticum aestivum linn. (wheat grass) in prevention and treatment of chronic diseases: an overview. International Journal of Pharmaceutical Sciences and Drug Research, 4(1), 10-14.

Shah S. (2007). Dietary factors in the modulation of inflammatory bowel disease activity. MedGenMed: Medscape general medicine, 9(1), 60.

Best, C. H., & Ridout, J. H. (1933). The effects of cholesterol and choline on deposition of liver fat. The Journal of Physiology, 78(4), 415–418.

Best, C. H., & Channon, H. J. (1935). The action of choline and other substances in the prevention and cure of fatty livers. Biochemical Journal, 29(12), 2651–2658.

Bonnesen, C., Eggleston, I. M., & Hayes, J. D. (2001). Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer research, 61(16), 6120–6130.

Nenonen, M. T., Helve, T. A., Rauma, A. L., & Hanninen, O. O. (1998). Uncooked, lactobacilli-rich, vegan food and rheumatoid arthritis. Rheumatology, 37(3), 274–281.

Kumar, P., Yadava, R. K., Gollen, B., Kumar, S., Verma, R. K., & Yadav, S. (2011). Nutritional contents and medicinal properties of wheat: a review. Life Sciences and Medicine Research, 22, 1-10.

How to Cite
Shalini Balakrishnan. (2020). Review on: Growing a Glass of Rich Immune Booster at Your Home: Triticum aestivum L. (Wheat Grass) Beneficial Effect on Health in this Pandemic Scenario. International Journal for Research in Applied Sciences and Biotechnology, 7(5), 141-145.