Biosafety Baseline for African Biofortified sorghum (ABS188 and ABS203) Through Feeding Bioassay

  • Sumayya Hamza Maishanu
  • Yahaya Abdullahi Umar
  • Dr. Mohammed Sani Abdulsalami
  • Dr. Abdulrazak Baba Ibrahim
  • Dr. Gloria Chechet
  • Dr. Abdurrahman Elfulaty Ahmad
Keywords: Genetically Modified Sorghum, Biofortification, Nutrition and Transgene

Abstract

A number of biofortified crops have been generated through transgenic technologies including sorghum.  A key step towards the release of genetically modified (GM) biofortified sorghum is its nutritional evaluation and risk assessment study. In this work, two genetically modified sorghum ABS188 and ABS203 were administered on mice to evaluate the effect of their consumption on liver and spleen. Following the molecular analysis of the two GM sorghum, the transgenes Zeamays Phytoene synthase gene (Zm-PSY1) and Pantoea ananatis Carotenoid Biosynthesis gene (PaCrT1) were confirmed in ABS 188 and ABS 203. There was a loss in weight of mice fed with ABS 188 and ABS 203 while weight gain was recorded in mice fed with local sorghum. In conclusion ABS 188 and ABS 203 are considered to be as safe and nutritious as local sorghum, with the advantage that the GM sorghum are biofortified with Vitamin A, Zinc and Iron. 

Downloads

Download data is not yet available.

References

Alexander, T. W., Reuter, T., Aulrich, K., Sharma, R., Okine, E. K., Dixon, W. T., & McAllister, T. A. (2007). A review of the detection and fate of novel plant molecules derived from biotechnology in livestock production. Animal Feed Science and Technology, 133(1–2), 31–62. https://doi.org/10.1016/j.anifeedsci.2006.08.003

Anglani, C. (1998). Sorghum for Human Food: a review. Plant Foods for Human Nutrition, 52(1), 85–95. https://doi.org/10.1023/A:1008065519820

Kılıç, A., & Akay, M. T. (2008). A three generation study with genetically modified Bt corn in rats: Biochemical and histopathological investigation. Food and Chemical Toxicology, 46(3), 1164–1170. https://doi.org/10.1016/j.fct.2007.11.016

Borzelleca, J. F. (1996). A proposed model for safety assessment of macronutrient substitutes. Regulatory Toxicology and Pharmacology, 23(1), S15-S18.

Guimarães, L. M., Farias, D. F., Muchagata, R. C. C., de Magalhães, M. Q., Campello, C. C., Rocha, T. L., Vasconcelos, I. M., Carvalho, A. F. U., Mulinari, F., & Grossi-de-Sa, M. F. (2010). Short-Term Evaluation in Growing Rats of Diet Containing Bacillus thuringiensis Cry1Ia12 Entomotoxin: Nutritional Responses and Some Safety Aspects. Journal of Biomedicine and Biotechnology, 2010, 1–8. https://doi.org/10.1155/2010/630267

Wataru Hashimoto, Keiko Momma, Tomoyuki Katsube, Yasunobu Ohkawa, Teruo Ishige, Makoto Kito, Shigeru Utsumi, & Kousaku Murata. (1999). Safety assessment of genetically engineered potatoes with designed soybean glycinin: compositional analyses of the potato tubers and digestibility of the newly expressed protein in transgenic potatoes. Journal of Science of Food and Agriculture, 79: 1607–1612. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1607::AID-JSFA408>3.0.CO;2-T

Harlander, S. K. (2002). The Evolution of Modern Agriculture and Its Future with Biotechnology. Journal of the American College of Nutrition, 21(sup3), 161S-165S. https://doi.org/10.1080/07315724.2002.10719260

Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A New Tool to Reduce Micronutrient Malnutrition. Food and Nutrition Bulletin, 32(1_suppl1), S31–S40. https://doi.org/10.1177/15648265110321S105

Bouis, H. E., & Saltzman, A. (2017). Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 12, 49–58. https://doi.org/10.1016/j.gfs.2017.01.009

International Crops Research Institute for the Semi-Arid Tropics- ICRISAT. (1997). The World Sorghum and Millet Economies: Facts, Trends and Outlook. ICRISAT/FAO, Patancheru, Institute of Medicine Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride. National Academy Press. Washington DC. pp 10. Available at: http://www.icrisat.org/PDF/Outlook%20rep-The%20World%20Chickpea.pdf

Jaszczak, K., Kruszewski, M., Baranowski, A., Parada, R., Bartłomiejczyk, T., Zimny, J., & Rosochacki, S. (2008). Micronucleus test and comet assay on mice fedover five generations a diet containing geneticallymodified triticale. Journal of Animal and Feed Sciences, 17(1), 100–109. https://doi.org/10.22358/jafs/66474/2008

Malatesta, M., Mannello, F., Sebastiani, M., Cardinali, A., Marcheggiani, F., Renò, F., & Gazzanelli, G. (1998). Ultrastructural characterization and biochemical profile of human gross cystic breast disease. Breast Cancer Research and Treatment, 48(3), 211–219. https://doi.org/10.1023/A:1005932915429

Malatesta, M., Perdoni, F., Santin, G., Battistelli, S., Muller, S., & Biggiogera, M. (2008). Hepatoma tissue culture (HTC) cells as a model for investigating the effects of low concentrations of herbicide on cell structure and function. Toxicology in Vitro, 22(8), 1853–1860. https://doi.org/10.1016/j.tiv.2008.09.006

Nowicki, P. L., Aramyan, L. H., Baltussen, W. H. M., Dvortsin, L., Jongeneel, R. A., Perez Dominguez, I., van Wagenberg, C. P. A., Kalaitzandonakes, N., Kaufman, J., Miller, D., Franke, L., & Meerbeek, B. (2010). Study on the Implications of Asynchronous GMO Approvals for EU Imports of Animal Feed Products. LEI, part of Wageningen UR. https://ec.europa.eu/agriculture/external-studies/asynchronous-gmo-approvals_en

Sakamoto, Y., Tada, Y., Fukumori, N., Tayama, K., Ando, H., Takahashi, H., Kubo, Y., Nagasawa, A., Yano, N., Yuzawa, K., & Ogata, A. (2008). A 104-Week Feeding Study of Genetically Modified Soybeans in F344 Rats. Journal of the Food Hygienic Society of Japan (Shokuhin Eiseigaku Zasshi), 49(4), 272–282. https://doi.org/10.3358/shokueishi.49.272

Schrøder, M., Poulsen, M., Wilcks, A., Kroghsbo, S., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Emami, K., Gatehouse, A., Shu, Q., Engel, K.-H., Altosaar, I., & Knudsen, I. (2007). A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food and Chemical Toxicology, 45(3), 339–349. https://doi.org/10.1016/j.fct.2006.09.001

Naqvi, S., Zhu, C., Farre, G., Ramessar, K., Bassie, L., Breitenbach, J., Perez Conesa, D., Ros, G., Sandmann, G., Capell, T., & Christou, P. (2009). Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proceedings of the National Academy of Sciences, 106(19), 7762–7767. https://doi.org/10.1073/pnas.0901412106

Shewry R. and Halford G. (2003). The Prolamin Storage Proteins of Millets. Available at: https://www.researchgate.net/publication/228495070_The_prolamin_storage_proteins_ofsorghum_and_millets

Jeffrey M. Smith. (2006). Most Offspring Died When Mother Rats Ate GM Soy. Synthesis/Regeneration 40. Available at: http://www.greens.org/s-r/40/40-03.html

Teshima, R., Akiyama, H., Okunuki, H., Sakushima, J., Goda, Y., Onodera, H., Sawada, J., & Toyoda, M. (2000). Effect of GM and Non-GM Soybeans on the Immune System of BN Rats and B10A Mice. Journal of the Food Hygienic Society of Japan (Shokuhin Eiseigaku Zasshi), 41(3), 188–193. https://doi.org/10.3358/shokueishi.41.188

World Health Organization, (1995). Application of the Principles of Substantial Equivalence to the Safety Evaluation of Foods and Food Components from Plants Derived from Biotechnology. Report of WHO Workshop WHO/FNU/FOS/95.1. World Health Organization, Geneva, Switzerland.

Zhao, Z., Glassman, K., Sewalt, V., Wang, N., Miller, M., Chang, S., Thompson, T., Catron, S., Wu, E., Bidney, D., Kedebe, Y., & Jung, R. (2003). Nutritionally Improved Transgenic Sorghum. In I. K. Vasil (Ed.), Plant Biotechnology 2002 and Beyond (pp. 413–416). Springer Netherlands. https://doi.org/10.1007/978-94-017-2679-5_85

Published
2020-09-02
How to Cite
Sumayya Hamza Maishanu, Yahaya Abdullahi Umar, Dr. Mohammed Sani Abdulsalami, Dr. Abdulrazak Baba Ibrahim, Dr. Gloria Chechet, & Dr. Abdurrahman Elfulaty Ahmad. (2020). Biosafety Baseline for African Biofortified sorghum (ABS188 and ABS203) Through Feeding Bioassay. International Journal for Research in Applied Sciences and Biotechnology, 7(5), 70-76. https://doi.org/10.31033/ijrasb.7.5.8

Most read articles by the same author(s)