Proximate and Mineral Analysis of African Biofortified sorghum (ABS188 and ABS203) and Indigenous Sorghum bicolor

  • Sumayya Hamza Maishanu
  • Yahaya Abdullahi Umar
  • Dr. Mohammed Sani Abdulsalami
  • Dr. Abdulrazak Baba Ibrahim
  • Dr. Abdurrahman Elfulaty Ahmad
Keywords: Genetically Modified Sorghum, Biofortification, Nutrition and Transgene


A Key Step towards the Release of Genetically Modified (GM) Biofortified Sorghum is its Nutritional Evaluation and Risk Assessment Study. In this work, two genetically modified sorghum (ABS 188 and ABS 203) and local sorghum were subjected to proximate analysis, Amino acid determination, and mineral analysis. Results of proximate analysis revealed the presence of the following expressed as percentage (%) ABS 188 contains Crude fibre (1.89), Ash (1.87), Crude protein (9.00), Oil (1.36), Lignin (8.83) dry Matter (91.17) and Nitrogen free extract (77.05); ABS 203 contains crude fibre (1.60), Ash (0.95), Crude protein (4.94), Oil (2.56), Lignin (8.37) Dry Matter (91.63) and Nitrogen free extract (81.58); Local sorghum contains crude fibre (2.08), Ash (0.85), Crude protein (4.56), Oil (1.12), Lignin (8.28) Dry Matter (91.72) and Nitrogen free extract (83.11); respectively. ABS 203 has the highest amount of β – Carotene (0.83ug/100mg), followed by 0.57ug/100mg for ABS 188 and 0.42ug/100mg for local sorghum. Results also revealed that the food samples contain almost all the essential amino acids in varying concentration, with glutamic acid occurring highest in the GM sorghum ABS 188 and ABS 203 having the highest for Leucine (14.01g/100g). Zinc was present in trace amount in all the samples (0.0003 0.033 mg/kg). In conclusion, ABS 188 and ABS 203 are considered to be as nutritious as local sorghum, with the advantage that the GM sorghum are biofortified with Vitamin A, Zinc and Iron. 


Download data is not yet available.


Adebiyi A. O., Adebiyi, A. P., and Olaniyi, E.O. (2005). Nutritional composition of sorghum bicolor starch hydrolyzed with amylase from rhizopus species Africa Journal of Biotechnology, 4(10), 1089-1094.

Alexander, T. W., Reuter, T., Aulrich, K., Sharma, R., Okine, E. K., Dixon, W. T., & McAllister, T. A. (2007). A review of the detection and fate of novel plant molecules derived from biotechnology in livestock production. Animal Feed Science and Technology, 133(1–2), 31–62.

Anglani, C. (1998). Sorghum for Human Food: a review. Plant Foods for Human Nutrition, 52(1), 85–95.

Benitez, L. (1989). Amino acid and fatty acid profiles In Aquaculture Nutrition Studies, pp. 23- 35.

George, C., Ridley, W. P., Obert, J. C., Nemeth, M. A., Breeze, M. L., & Astwood, J. D. (2004). Composition of Grain and Forage from Corn Rootworm-Protected Corn Event MON 863 Is Equivalent to That of Conventional Corn (Zea mays L.). Journal of Agricultural and Food Chemistry, 52(13), 4149–4158.

Harlander, S. K. (2002). The Evolution of Modern Agriculture and Its Future with Biotechnology. Journal of the American College of Nutrition, 21(sup3), 161S-165S.

Herman, R. A., Phillips, A. M., Collins, R. A., Tagliani, L. A., Claussen, F. A., Graham, C. D., Bickers, B. L., Harris, T. A., & Prochaska, L. M. (2004). Compositional Equivalency of Cry1F Corn Event TC6275 and Conventional Corn ( Zea mays L.). Journal of Agricultural and Food Chemistry, 52(9), 2726–2734.

Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A New Tool to Reduce Micronutrient Malnutrition. Food and Nutrition Bulletin, 32(1_suppl1), S31–S40.

Bouis, H. E., & Saltzman, A. (2017). Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 12, 49–58.

James, T., Meyer, D., Esparza, E., Depeters, E. J., & Perez-Monti, H. (1999). Effects of Dietary Nitrogen Manipulation on Ammonia Volatilization from Manure from Holstein Heifers. Journal of Dairy Science, 82(11), 2430–2439.

Jimoh, W. L. O., & Abdullahi, M. S. (2017). Proximate analysis of selected sorghum cultivars. Bayero Journal of Pure and Applied Sciences, 10(1), 285.

Malatesta, M., Mannello, F., Sebastiani, M., Cardinali, A., Marcheggiani, F., Renò, F., & Gazzanelli, G. (1998). Ultrastructural characterization and biochemical profile of human gross cystic breast disease. Breast Cancer Research and Treatment, 48(3), 211–219.

Mustapha, G. and Magdi, O. (2003). Proximate composition and content of sugars, amino acids and anti nutritional factors of three sorghum varieties. Agricultural Research Centre, King Sa'ud University, pp 5-19.

Nambara, E., & Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 56(1), 165–185.

Nandini, C., & Salimath, P. (2003). Structural features of arabinoxylans from Sonalika variety of wheat: Comparison between whole wheat flour and wheat bran. Journal of the Science of Food and Agriculture, 83(13), 1297–1302.

Nowicki, P. L., Aramyan, L. H., Baltussen, W. H. M., Dvortsin, L., Jongeneel, R. A., Perez Dominguez, I., van Wagenberg, C. P. A., Kalaitzandonakes, N., Kaufman, J., Miller, D., Franke, L., & Meerbeek, B. (2010). Study on the Implications of Asynchronous GMO Approvals for EU Imports of Animal Feed Products. LEI, part of Wageningen UR.

Rodriguez-Amaya, D.B. (2001) A Guide to Carotenoid Analysis in Foods. ILSI Human Nutrition Institute. One Thomas Circle, NW, Washington DC, 64, 20005-5802.

Ruiz-Sola, M. Á., & Rodríguez-Concepción, M. (2012). Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway. The Arabidopsis Book, 10, e0158.

Sakamoto, Y., Tada, Y., Fukumori, N., Tayama, K., Ando, H., Takahashi, H., Kubo, Y., Nagasawa, A., Yano, N., Yuzawa, K., & Ogata, A. (2008). A 104-Week Feeding Study of Genetically Modified Soybeans in F344 Rats. Journal of the Food Hygienic Society of Japan (Shokuhin Eiseigaku Zasshi), 49(4), 272–282.

Shewry R. and Halford G. (2003). The Prolamin Storage Proteins of Millets. Available at:

Torres Cepeda TE, Alanis Guzmán MG, Maiti R. (1996). Relaciones entre la composición nutricional y parámetros anatómicos en sorgo (Sorghum bicolor L. Moench) [Relationship between nutritional composition and anatomical parameters in sorghum (Sorghum bicolor L. Moench)]. Arch Latinoam Nutr. 46(3), 253-259. Available at:

Udachan, Iranna S., Sahoo A.K. and Hend G.M. (2012). Extraction and characterization of sorghum(Sorghum bicolor L. Moench) starch. International Food Research Journal, 19(1), 315-319. Available at:

World Health Organization, (1995). Application of the Principles of Substantial Equivalence to the Safety Evaluation of Foods and Food Components from Plants Derived from Biotechnology. Report of WHO Workshop WHO/FNU/FOS/95.1. World Health Organization, Geneva, Switzerland.

Zhao, Z., Glassman, K., Sewalt, V., Wang, N., Miller, M., Chang, S., Thompson, T., Catron, S., Wu, E., Bidney, D., Kedebe, Y., & Jung, R. (2003). Nutritionally Improved Transgenic Sorghum. In I. K. Vasil (Ed.), Plant Biotechnology 2002 and Beyond (pp. 413–416). Springer Netherlands.

How to Cite
Sumayya Hamza Maishanu, Yahaya Abdullahi Umar, Dr. Mohammed Sani Abdulsalami, Dr. Abdulrazak Baba Ibrahim, & Dr. Abdurrahman Elfulaty Ahmad. (2020). Proximate and Mineral Analysis of African Biofortified sorghum (ABS188 and ABS203) and Indigenous Sorghum bicolor. International Journal for Research in Applied Sciences and Biotechnology, 7(5), 63-69.

Most read articles by the same author(s)